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Abstract. We construct solutions of specific asymptotics to the
Einstein constraint equations using a cut–off technique. Moreover,
we give various examples of vacuum asymptotically flat manifolds
whose center of mass and angular momentum fail to exist.

1. Introduction

Let M be a three–dimensional manifold. Let g be a Riemannian met-
ric and K be a symmetric (0, 2)–tensor on M . The Einstein constraint
equations are

Rg − |K|2g + (trgK)2 = 2µ,

divg(K − (trgK)g) = J,

where µ and J are energy density and momentum density respectively.
The triple (M, g,K) is called an initial data set if it satisfies the above
constraint equations. It is called a vacuum initial data set if addition-
ally µ = 0 and J = 0. In general relativity, the constraint equations are
from the Gauss and Codazzi equations for a hypersurface M in space-
time with the induced metric g and the induced second fundamental
form K.

An initial data set (M, g,K) is called asymptotically flat at the decay
rate q if, outside a compact set, M is diffeomorphic to R3 \ B1 and if
there exists an asymptotically flat chart {x} so that, for some q > 1/2,

gij(x) = δij +O2(r
−q), Kij(x) = O1(r

−1−q)

and

µ(x) = O(r−2−2q), J(x) = O(r−2−2q),

where r =
√
x2

1 + x2
2 + x2

3 and the subscript in the big O notation
indicates the corresponding decay rate on successive derivatives, e.g.
f = O1(r

−q) means that there is a constant C uniformly in r so that
|f | ≤ Cr−q and |∂f | ≤ Cr−1−q.
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We introduce the momentum tensor π = K − (trgK)g, and define
the constraint map

Φ(g, π) =

(
Rg − |π|2g +

1

2
(trgπ)2, divgπ

)
.

Then the Einstein constraint equations take the form Φ(g, π) = (2µ, J).
In the asymptotically flat chart, the following physical quantities are

defined as limits of surface integrals over Euclidean spheres with the
standard surface measure on {r = ρ}:

m =
1

16π
lim
ρ→∞

∫
r=ρ

∑
i,j

(gij,i − gii,j)
xj
r
dS, (1.1)

Pi =
1

8π
lim
ρ→∞

∫
r=ρ

∑
j

πij
xj
r
dS, (1.2)

Cl =
1

16πm
lim
ρ→∞

∫
r=ρ

[
xl
∑
i,j

(gij,i − gii,j)
xj
r
−
∑
i

(
gil
xi
r
− gii

xl
r

)]
dS,

(1.3)

Ji =
1

8π
lim
ρ→∞

∫
r=ρ

∑
j,k

πjkY
j
(i)

xk
r
dS, (1.4)

where Y(i) are the rotation vector fields, e.g. Y(1) = x3∂2− x2∂3. These
integrals correspond to the ADM mass m, linear momentum P , center
of mass C, and angular momentum J .

It is well–known that the ADM mass and linear momentum of an
asymptotically flat manifold are well–defined [1, 3]. However, center
of mass and angular momentum may not be well–defined unless some
extra condition (for example, the RT condition below) is imposed.

Definition 1.1. (M, g,K) is asymptotically flat satisfying the Regge-
Teitelboim condition (the RT condition) if (M, g,K) is asymptotically
flat, and g,K satisfy these asymptotically even/odd conditions:

goddij (x) = O2(r
−1−q), Keven

ij (x) = O1(r
−2−q)

and

µodd(x) = O(r−3−2q), Jodd(x) = O(r−3−2q),

where f odd(x) = f(x)−f(−x) and f even(x) = f(x)+f(−x) are respec-
tively the even and odd parts of f with respect to the fixed asymptotically
flat chart {x}.

Assuming m 6= 0, the center of mass and angular momentum are
well–defined for asymptotically flat manifolds with the RT condition
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[2, 5, 6]. Moreover, all known exact solutions to the constraint equa-
tions satisfy the RT condition. In particular, two well–known families
of solutions to the vacuum constraint equations are Schwarzschild and
Kerr, which satisfy the RT condition. It was not clear whether the vac-
uum asymptotically flat manifolds without the RT condition do exist,
because one may tend to think the asymptotics of the solutions to the
vacuum constraint equations are rigid. We show that the asymptotics
are not rigid. Indeed, we can construct solutions without the RT con-
dition. Using a cut–off technique of Corvino and Schoen [4], we have
the following theorem.

Assume that σ, τ are symmetric (0, 2)–tensors defined outside a com-
pact set in R3. Assume that σij, τij are components of σ, τ with respect
to the standard Euclidean coordinate chart {x}.

Theorem 1. Assume that σ and τ satisfy the linearized constraint
equations outside a compact set in R3, i.e.∑

i,j

(σij,ij − σii,jj) = 0, (1.5)∑
i

τij,i = 0, for j = 1, 2, 3. (1.6)

Furthermore, assume that σij(x) = O2(r
−q), τij(x) = O1(r

−1−q) for
q ∈ (1/2, 1). Then given any asymptotically flat initial data set (g, π)
at the decay rate greater than or equal to q and Φ(g, π) = (2µ, J), there
exists an asymptotically flat initial data set (g, π) with Φ(g, π) = (2µ, J)
so that, for some constants A and Bi, i = 1, 2, 3,

gij =

(
1 +

A

r

)
δij + σij +O2(r

−1−q), (1.7)

πij = τij +
1

r3

[
−Bixj −Bjxi +

∑
k

(Bkxk)δij

]
+O1(r

−2−q), (1.8)

and (g, π) and (g, π) are close (in the sense of weighted Sobolev spaces).

In order to construct solutions of special asymptotics, one has to find
explicit σ and τ satisfying (1.5) and (1.6). In section 3, we give exam-
ples of σ and τ . Therefore, we can construct families of asymptotically
flat manifolds without the RT condition and show that their enter of
mass and angular momentum (1.3) and (1.4) diverge (Corollaries 3.4,
3.7, and 3.8). It is desirable to weaken the RT condition in order to
define center of mass and angular momentum. The examples in section
3 may help us to understand these physical quantities.
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2. Constructing Solutions of Specific Asymptotics

To prove Theorem 1, we introduce the weighted Sobolev spaces.

Definition 2.1 (Weighted Sobolev Spaces). For an integer k ≥ 0, a

real number p ≥ 0, and a real number q, we say f ∈ W k,p
−q if

‖f‖Wk,p
−q
≡

∫
M

∑
|α|≤k

(∣∣Dαf
∣∣ξ|α|+q)p ξ−3 dvolg

 1
p

<∞,

where α is a multi-index and ξ is a continuous function with ξ = |x|
when the asymptotically flat chart is defined. When p =∞,

‖f‖Wk,∞
−q

=
∑
|α|≤k

ess sup
M
|Dαf |ξ|α|+q.

Then we can weaken the definition of asymptotically flat manifolds
and define (g, π) to be asymptotically flat at the decay rate q if

(g − δ, π) ∈ W 2,p
−q ×W

1,p
−1−q

and Φ(g, π) = (µ, J) with

(µ, J) ∈ W 0,p
−2−2q ×W

0,p
−2−2q.

In the proof, we assume that p > 3/2 and q ∈ (1/2, 1).

Proof of Theorem 1. Let {φk} be a sequence of smooth cut–off func-
tions:

φk(x) =

 1 in Bk,
between 0 and 1 in B2k \Bk,
0 outside B2k.

Also {φk} is chosen so that φk is radial and |∂φk| ≤ C/k and |∂2φk| ≤
C/k2 for some constant C independent of k.

Let (g, π) be a given asymptotically flat manifold at the decay rate
q. Using the cut–off technique, we consider

ĝk = φkg + (1− φk)(δ + σ), (2.1)

π̂k = φkπ + (1− φk)τ. (2.2)

For the moment, we work on a fixed k and suppress the subscript k
when it is clear from context.

By (1.5), (1.6), and the properties of φk,

Φ(ĝ, π̂) = (µ̂, Ĵ),
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where (µ̂, Ĵ) = (µ, J) in Bk and (µ̂, Ĵ) = (O(r−2−2q), O(r−2−2q)) outside
B2k because of (1.5) and (1.6).

In order to fully solve the constraint equations with the given µ and
J , we consider a function u and a vector field X so that

g = u4ĝ, (2.3)

π = u2(π̂ + LĝX), (2.4)

where LgX denotes the modified Lie derivative LgX = LgX−(divgX)g
for a Riemannian metric g.
claim: There exists (uk, Xk) with (uk − 1, Xk) ∈ W 2,p

−q × W 2,p
−q , and

(hk, wk) ∈ W 2,p
−q ×W

1,p
−1−q with the compact supports such that

Φ(gk + hk, πk + wk) = (µ, J) (2.5)

for k large.

Proof of the claim. The proof is similar to the argument by Corvino
and Schoen [4, Theorem 1]. The only (minor) difference is that they
work on vacuum initial data sets, i.e. µ = 0 and J = 0. To see the
argument works for general µ and J , we only highlight the different
part of the argument.

Let Tk : (1 +W 2,p
−q )×W 2,p

−q → W 0,p
−2−q ×W

0,p
−2−q be defined by

Tk(u,X) = Φ(u4ĝk, u
2(π̂k + LĝkX))

be a sequence of operators. The linearization D(Tk)(1,0) is a Fredholm
operator with index 0 for k large. Using the surjectivity of DΦ(ĝk,π̂k),
one can define

T k ((u,X), (h,w)) = Φ
(
u4ĝk + h, u2(π̂k + LĝkX) + w

)
where (h,w) is chosen so that DΦ(ĝk,π̂k)(h,w) is in the cokernel of

D(Tk)(1,0). Therefore, D(T k)((1,0),(0,0)) is an isomorphism for each large

k by construction. Then by applying the inverse function theorem, T k
is a diffeomorphism from a neighborhood of ((1, 0), (0, 0)) to a fixed (in-
dependent of k) neighborhood of T k((1, 0), (0, 0)) when k large. Then
the image contains (µ, J) when k large, and hence, we can find the
sequence of initial data sets so that (2.5) holds. �

It remains to check that (g, π) has the desired asymptotics (1.7) and
(1.8). Fix k. Outside a large compact set, if we denote g̃ = δ + σ and
L = Leg, we have, by (2.1), (2.2), (2.3), and (2.4),

g = u4g̃,

π = u2(τ + LX).
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Because (g, π) satisfies the constraint equations, we can derive the dif-
ferential equation for u:

− 8∆egu+

[
Reg − |τ |2eg +

1

2
(tregτ)2

]
u

+ u

[
treg(τ)treg(LX) +

1

2
(treg(LX))2

]
− u

[∑
i,j,k,l

g̃ij g̃kl2τik(LX)jl + |LX|2eg
]

= 2u5µ,

and the differential equations for Xi:

divgπ = u−4g̃jk
[
u2(τ + LX)ij;k + 2uu,k(τ + LX)ij

]
= u−2divegτ + u−2diveg(LX) + 2u−3u,kg̃

jk(τ + LX)ij

= J.

Then, for r large, u and {Xi}3i=1 satisfy the differential equations of
the standard Laplacian ∆:

∆u = O(r−2−2q), and ∆Xi = O(r−2−2q).

Therefore, u and Xi are harmonic up to lower terms; that is,

u = 1 +
A

4r
+O(r−2q),

Xi =
Bi

r
+O(r−2q),

for some constants A and {Bi}3i=1. Then (1.7) and (1.8) follow. �

3. Solutions of Special Asymptotics

In order to construct solutions of explicit asymptotics, the key is to
solve σ and τ in (1.5) and (1.6). In this section, we show some special
examples of σ and τ and use Theorem 1 to construct asymptotically flat
initial data sets which do not satisfy the RT condition. In subsection
3.1, we discuss a family of solutions at decay rate exactly equal to one.
In subsection 3.2, we discuss another family of solutions whose decay
rate is less than 1. Moreover, we show that the center of mass and
angular momentum of these examples do not exist.
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3.1. Solutions at the decay rate equal to 1. Let σ and τ be

σij =
α

r

(
xixj
r2
− 1

2
δij

)
, (3.1)

τij =
β

r2

xixj
r2

, (3.2)

where α and β are arbitrary C2 functions defined over the unit sphere
S2. Because α and β are independent of r, by direct computations, we
have the following lemma:

Lemma 3.1. For any α, β ∈ C2(S2), σ and τ satisfy the linearized
constraint equations (1.5) and (1.6).

Proposition 3.2. For any α, β ∈ C2(S2), there exists a vacuum initial
data set (g, π) with the following asymptotics:

gij =

(
1 +

A

r

)
δij +

α

r

(
xixj
r2
− 1

2
δij

)
+O2(r

−1−q), (3.3)

πij =
β

r2

xixj
r2

+
1

r3

[
−Bixj −Bjxi +

∑
k

(Bkxk)δij

]
+O1(r

−2−q),

(3.4)

Proof. The proposition follows by choosing (g, π) = (δ, 0) and (σ, τ) as
(3.1) and (3.2) in Theorem 1. �

Remark. Asymptotically flat manifolds of the above asymptotics have
been discovered by Beig and Ó Murchadha [2]. They showed that (g, π)
satisfies the vacuum constraint equations up to leading order terms by
direct computations. Here, we provide a more rigorous treatment and
prove that (g, π) indeed satisfies the vacuum constraint equations.

Examples of divergent angular momentum. We can construct the asymp-
totically flat manifolds whose angular momentum with respect to a
rotation vector field Y diverges.

Let (g, π) be an asymptotically flat manifold of the asymptotics (3.3)
and (3.4). Fix ρ0 and let Aρ = {x ∈ R3 : ρ0 ≤ |x| ≤ ρ}.

Lemma 3.3. For any α, β ∈ C2(S),∫
∂Aρ

∑
i,j

πijY
ixj
r
dS =

1

4

∫
Aρ

∑
p

α,pβ

r3
Y p dx−

∫
Aρ

α

r4

∑
i,j

Y i
,jBjxi dx

+

∫
Aρ

(
− 3

4r3

∑
i,p

(Bixiα,pY
p)− α

r4

∑
p

BpY
p

)
dx+O(1), (3.5)
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where and in the following O(1) denotes the term bounded uniformly
in ρ.

Proof. We compute the angular momentum (3.5) over the annulus.
Notice that because g = δ +O(r−1)∫

∂Aρ

∑
i,j

πijY
ix

j

r
dS =

∫
∂Aρ

∑
i,j

πijY
iνj dSg +O(1).

Then by the divergence theorem,∫
∂Aρ

∑
i,j

πijY
iνj dSg =

∫
Aρ

∑
i,j,k

gjkπkiY
i
;j dvolg

=

∫
Aρ

∑
i,j,k

gjkπkiY
i
,j dvolg +

∫
Aρ

∑
i,j,k,p

gjkπkiY
pΓ

i

jp dvolg. (3.6)

In the first equality, we use the constraint equation divgπ = 0. Then
because Y is Killing (with respect to the Euclidean metric),∫

Aρ

∑
i,j,k

gjkπkiY
i
,j dvolg =

∫
Aρ

∑
i,j,k

(gjk − δjk)πkiY i
,j dvolg

By (1.7) and (1.8), the above integral is equal to∫
Aρ

[
−
∑
i,j,k

σjkτkiY
i
,j −

A

r

∑
i,j

τijY
i
,j

]
dx

−
∫
Aρ

1

r3

∑
i,j,k

σjkY
i
,j

(
−Bkxi −Bixk +

∑
l

Blxlδik

)
dx+O(1). (3.7)

Then by (3.1) and (3.2), the first line vanishes:∑
i,j,k

σjkτkiY
i
,j =

αβ

r3

∑
i,j,k

(
xjxk
r2
− 1

2
δjk

)
xixk
r2

Y i
,j =

αβ

2r4

∑
i,j

xixj
r
Y i
,j

=
αβ

2r4

∑
i

xi
∂Y i

∂r
=
αβ

2r4

∂

∂r

(∑
i

xiY
i

)
= 0,

where we use that Y is a rotation vector field and hence
∑

i xiY
i = 0.

The other term can be computed similarly. The second line in (3.7) is

−
∫
Aρ

α

r4

∑
i,j

Y i
,jBjxi dx+O(1).
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Because g = δ +O(r−1), the second integral in (3.6) is∫
Aρ

∑
i,j,p

gjkπkiY
pΓ

i

jp dvolg =
1

2

∫
Aρ

∑
i,j,p

πijY
pgij,p dx+O(1)

=
1

2

∫
Aρ

∑
i,j,p

1

r3

[
−2Bixj +

∑
k

(Bkxk)δij

]
Y pσij,p dx

+
1

2

∫
Aρ

∑
i,j,p

τijY
pσij,p dx+O(1).

Then the lemma follows by substituting σ and τ by (3.1) and (3.2), �

Corollary 3.4. If we choose

α =
x2

1

r2
, β =

x1x3

r2
, and Y = x3∂1 − x1∂3,

the integral of the angular momentum with respect to Y diverges.

Proof. By Lemma 3.3 and the straightforward computations,

1

4

∫
Aρ

∑
p

α,pβ

r3
Y p dx =

1

2

∫
Aρ

x2
1x

2
3

r7
dx→∞ as ρ→∞.

The other terms in (3.5) vanish because α is an even function and Y
is odd. �

Remark. If α is a constant, then the angular momentum exists no
matter what choices of β are made.

Examples of divergent center of mass. We construct an explicit example
of an asymptotically flat manifold whose center of mass diverges.

Lemma 3.5. For any asymptotically flat Riemannian metric g = δ +
O2(r

−1), the scalar curvature has the asymptotics:

Rg(x) =
∑
i,j

(gij,ij − gii,jj) + Eg +O(r−5), when r large, (3.8)

where

Eg =
∑
i,j,l

(
−gjl,jgil,i +

3

4
gij,lgij,l −

1

4
gjj,lgii,l −

1

2
gij,lgil,j + gjl,jgii,l

)
.

Proof. For any Riemannian metric g, over a coordinate chart, we have

Rg =
∑
i,j

g(∇∂j∇∂i∂i −∇∂i∇∂j∂i, ∂j)

=
∑
i,j,p

(Γpii,jgpj − Γpij,igpj) +
∑
i,j,p,m

(ΓpiiΓ
m
jpgmj − ΓpijΓ

m
ipgmj).
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Using the property that g = δ + O2(r
−1) and by direct computations,

we have the following asymptotics:∑
i,j,p

Γpii,jgpj =
∑
i,j,l

[
−1

2
gjl,j(2gil,i − gii,l) +

1

2
(2gij,ij − gii,jj)

]
+O(r−5),

∑
i,j,p

Γpij,igpj =
∑
i,j,l

[
−1

2
gjl,igjl,i +

1

2
gjj,ii

]
+O(r−5),

∑
i,j,p,m

ΓpiiΓ
m
jpgmj =

∑
i,j,l

1

4
gjj,l(2gil,i − gii,l) +O(r−5),

∑
i,j,p,m

ΓpijΓ
m
ipgmj =

∑
i,j,l

1

4
gij,l(2gil,j − gij,l) +O(r−5).

Combining above identities, we derive (3.8). �

Let (g, π) be an asymptotically flat manifold of the asymptotics (1.7)
and (1.8). If we let (g, π) = (δ, 0) and τ = 0, from the proof of Theorem
1, we have π = 0 and hence g satisfies the constraint equation Rg = 0.

Proposition 3.6. Let g satisfy (3.3) with Rg = 0. Its center of mass
is equal to, for l = 1, 2, 3,

Cl =
1

16πm
lim
ρ→∞

∫
Aρ

xl

[
−29|∇α|2

16r2
+
Aα

2r4
+
α2

8r4

]
dx+ Cl, (3.9)

for some constant Cl.

Proof. Let Aρ = {x ∈ R3 : ρ0 ≤ |x| ≤ ρ} for some fixed ρ0. Then by
the divergence theorem∫

∂Aρ

[
xl
∑
i,j

(gij,i − gii,j)
xj
r
−
∑
i

(
gil
xi
r
− gii

xl
r

)]
dS

=

∫
Aρ

xl
∑
i,j

(gij,ij − gii,jj) dx.

Using the identity (3.8),

xl
∑
i,j

(gij,ij − gii,jj) = xlRg − xlEg +O(r−4).

The first term of the scalar curvature vanishes, and the third term is
integrable over Aρ. It remains to compute

∫
Aρ
xlEg dx. By (3.3) and

direct computations, the following identities hold up to terms of order
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O(r−5): ∑
i,j,l

gjl,jgil,i =
A2

r4
+
|∇α|2

4r2
+

1

r4

(
9

4
α2 − 3Aα

)
,

∑
i,j,l

g2
ij,l =

3A2

r4
+

3|∇α|2

r4
+

19α2

4r4
− Aα

r4
,

∑
i,j,l

gjj,lgii,l =
|∇α|2

4r2
+

1

r4

(
3A− 1

2
α

)2

,

∑
i,j,l

gij,lgil,j =
A2

r4
+
|∇α|2

4r2
+

17α2

4r4
− 3Aα

r4
,

∑
i,j,l

gjl,jgii,l =
|∇α|2

4r2
+

1

r4

(
A− 3

2
α

)(
3A− 1

2
α

)
.

Therefor, (3.9) follows by combining the above identities. �

Corollary 3.7. If we choose

α =
x1

r
,

then the first component of the center of mass C1 is infinity.

3.2. Solutions at the decay rate less than 1. We consider another
family of τ satisfying (1.6). Let u be any C2 function on R3. Let

τij = (|∇u|2 + u∆u)δij − (uiuj + uuij).

By direct computations,∑
i

τij,i = 0 for j = 1, 2, 3.

We can choose, for example, u = log r. Then

τij =
1

r2
δij +

xixj
r4

(2 log r − 1). (3.10)

Notice that τij 6= O1(r
−2) because the logarithmic term. More gener-

ally, if we let u = r(1−q)/2 for q < 1, τ = O1(r
−1−q).

Choosing this particular τ from (3.10), we have another example of a
vacuum asymptotically flat manifold whose angular momentum is not
defined.

Corollary 3.8. Let (g, π) satisfy (1.7) and (1.8) where σ and τ have
the expression (3.1) and (3.10). Then if

α = tan−1

(
x2

x1

)
,
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the angular momentum with respect to Y = −x2∂1 + x1∂2 diverges.
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