
LOCALIZED DEFORMATION FOR INITIAL DATA SETS WITH THE

DOMINANT ENERGY CONDITION

JUSTIN CORVINO AND LAN-HSUAN HUANG

Abstract. We consider localized deformation for initial data sets of the Einstein field equations

with the dominant energy condition. Deformation results with the weak inequality need to be

handled delicately. We introduce a modified constraint operator to absorb the first order change of

the metric in the dominant energy condition. By establishing the local surjectivity theorem, we can

promote the dominant energy condition to the strict inequality by compactly supported variations

and obtain new gluing results with the dominant energy condition. The proof of local surjectivity

is a modification of the earlier work for the usual constraint map by the first named author and

R. Schoen [7] and by P. Chruściel and E. Delay [3], with some refined analysis.

1. Introduction

Deformations to obtain the strict dominant energy condition are important analytical tools in

the study of initial data sets. Among various applications, the most prominent one is perhaps

the proof of the Positive Mass Theorem by R. Schoen and S.-T. Yau, in which they use the strict

dominant energy condition in conjunction with the stability of a minimal hypersurface (or more

generally a marginally outer trapped hypersurface) to study the geometry and topology of the

manifold. Their deformation results for asymptotically flat manifolds are global because their

argument involves a conformal change of the metric, and the resulting variations of the initial

data set, which satisfy an elliptic equation, cannot have compact supports, see [19] for the scalar

curvature operator and [20] for the dominant energy condition with nonzero current density J . A

general global deformation result for asymptotically flat initial data sets is obtained by the second

named author with M. Eichmair, D. Lee, and R. Schoen as a central analytical step in the proof of

the spacetime Positive Mass Theorem [11].

In contrast, if one restricts to compactly supported variations of initial data sets, so-called

localized deformations, there is an obstruction to deform to the strict dominant energy condition.

For vacuum initial data sets, the obstruction is related to whether the corresponding spacetime

has Killing vector fields. More specifically, work of A. Fischer and J. Marsden [12, 13] shows that

the constraint map is locally surjective if the kernel of the formal L2 adjoint of the linearized

constraint operator is trivial, a condition which V. Moncrief [18] proves is equivalent to the absence

of spacetime Killing vector fields. Fischer-Marsden’s proof uses the splitting theorem of the function

spaces on a closed manifold in an essential way. For compact manifolds with boundary, the first

named author uses a variational approach to prove a local surjectivity result for the scalar curvature
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operator [5], and then with R. Schoen for the full constraint map [7]. P. Chruściel and E. Delay

introduce finer weighted spaces and derive a systematic approach to localized deformations for

the constraint map in various settings [3]. Localized deformations play an important role in gluing

constructions (e.g. [5, 7, 3, 2, 17, 4]) and have applications to rigidity type results [5, Theorem 8], but

all earlier results focus on initial data sets that are either vacuum or have the strict dominant energy

condition. In this paper, we present localized deformations without assuming either condition, by

introducing a new modified constraint operator, and obtain new gluing applications. The rigidity

type applications will be discussed in a forthcoming paper.

For non-vacuum initial data sets, there is a serious technical detail in deforming to the strict

inequality from a weak inequality. Essentially, the deformation does not seem to follow directly from

local surjectivity of the constraint map, as we now discuss. (Please refer Section 2 for the relevant

definitions.) Suppose the constraint map Φ is surjective at an initial data set (g, π). Given (ψ, V ),

suppose one solves for a small deformation (h,w) to achieve Φ(g + h, π + w) = Φ(g, π) + (2ψ, V ).

That is, the mass and current densities of the deformed initial data set (ḡ, π̄) = (g + h, π + w) are

µ̄ = µ+ ψ and J̄ = J + V . The norm of J̄ is taken with respect to the deformed metric, and

|J̄ |ḡ = |J + V |g+h ≤ |J + V |g + 1
2 |h|g|J + V |g +O(|h|2g).

Thus for the deformed data (ḡ, π̄)

µ̄− |J̄ |ḡ ≥ µ− |J + V |g + ψ − 1
2 |h|g|J + V |g +O(|h|2g).(1.1)

Note that h depends on the choice of (ψ, V ) and the estimates do not indicate that ψ can dominate

the first order change involving h to promote the dominant energy condition (while we can arrange

for ψ to dominate the term O(|h|2g)).
In this work, we introduce a modified constraint map. Given a vector field V , a metric g and a

symmetric (0, 2)-tensor h, let h · V denote the vector field dual (with respect to g) to the tensor

contraction of h and V . For a fixed initial data set (g, π) and a vector field W , let ΦW
(g,π) be defined

by

ΦW
(g,π)(γ, τ) = Φ(γ, τ) +

(
0, 1

2γ · (J +W )
)
,

where J = divgπ is the current density of (g, π). When W = V , the additional term is designed

to absorb the first order change that results in the term 1
2 |h|g|J + V |g from (1.1) and is motivated

by the linear map introduced in [11]. We establish a sufficient condition, in terms of the modified

operator Φ0
(g,π) (setting W = 0), to promote to the dominant energy condition. Throughout this

paper, we let Ω be a compact connected manifold with smooth boundary, and let Ω be the manifold

interior, unless otherwise indicated.

Theorem 1.1. Let (g, π) ∈ C4,α(Ω) × C3,α(Ω) be an initial data set. Suppose that the kernel

of DΦ0
(g,π)|

∗
(g,π) is trivial on Ω. Then there is a C2,α(Ω) neighborhood W of the zero vector and

constants ε > 0, C > 0 such that for (ψ, V ) ∈ B0 × (B1 ∩ W) with ‖(ψ, V )‖B0×B1 ≤ ε, there

exists (h,w) ∈ B2 × B2 with ‖(h,w)‖B2×B2 ≤ C‖(ψ, V )‖B0×B1 such that (ḡ, π̄) = (g + h, π + w) ∈
C2,α(Ω)× C2,α(Ω) is an initial data set and satisfies

µ̄− |J̄ |ḡ ≥ µ− |J + V |g + ψ.
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The weighted Banach spaces Bk = Bk(Ω) ⊂ Ck,αloc (Ω) for k = 0, 1, 2 and the respective norms are

defined in Section 2.5. In particular, if (g, π) satisfies the (weak) dominant energy condition, the

above theorem gives a sufficient condition to deform to the strict dominant energy condition in Ω

by setting V = 0 and ψ > 0 in Ω.

Our proofs also give the following version of Theorem 1.1 that includes higher order regularity

and uniformity in the neighborhood of an arbitrary initial data set.

Theorem 1.2. Let k ≥ 0. Let (g0, π0) ∈ Ck+4,α(Ω)×Ck+3,α(Ω) be an initial data set. Suppose that

the kernel of DΦ0
(g0,π0)|

∗
(g0,π0) is trivial on Ω. Then there is a Ck+4,α(Ω)×Ck+3,α(Ω) neighborhood

U of (g0, π0), a Ck+2,α(Ω) neighborhood W of the zero vector, and constants ε > 0, C > 0 such

that for (g, π) ∈ U and for (ψ, V ) ∈ Ck,αc (Ω) × (Ck+1,α
c (Ω) ∩ W) with ‖(ψ, V )‖B2×B1 ≤ ε, there

exists (h,w) ∈ Ck+2,α
c (Ω) × Ck+2,α

c (Ω) with ‖(h,w)‖Ck+2,α×Ck+2,α ≤ C‖(ψ, V )‖Ck,α×Ck+1,α such

that (ḡ, π̄) = (g + h, π + w) ∈ Ck+2,α(Ω)× Ck+2,α(Ω) is an initial data set that satisfies

µ̄− |J̄ |ḡ ≥ µ− |J + V |g + ψ.

If, in addition, (g, π) ∈ C∞(Ω) and (ψ, V ) ∈ C∞c (Ω), then we can achieve (ḡ, π̄) ∈ C∞(Ω).

As an application, we give the following gluing construction of initial data sets from interpolation.

This extends the scalar curvature result of E. Delay [9], but the presence of |J | adds an analytical

subtlety.

Theorem 1.3. Let k ≥ 0. Let (g0, π0) ∈ Ck+4,α(Ω)×Ck+3,α(Ω) be an initial data set. Suppose that

the kernel of DΦ0
(g0,π0)|

∗
(g0,π0) is trivial on Ω. Let 0 ≤ χ ≤ 1 be a smooth function such that χ(1−χ)

is supported on a compact subset of Ω. Then there exists a Ck+4,α(Ω) × Ck+3,α(Ω) neighborhood

U of (g0, π0) such that for (g1, π1), (g2, π2) ∈ U and for (g, π) = χ(g1, π1) + (1 − χ)(g2, π2), there

exists a pair of symmetric tensors (h,w) supported in Ω such that the initial data set (ḡ, π̄) =

(g + h, π + w) ∈ Ck+2,α(Ω)× Ck+2,α(Ω) satisfies

µ̄− |J̄ |ḡ ≥ χ(µ1 − |J1|g1) + (1− χ)(µ2 − |J2|g2).

If, in addition, (g1, π1), (g2, π2) ∈ C∞(Ω), then we can achieve (ḡ, π̄) ∈ C∞(Ω).

We will consider deformation and gluing constructions in the asymptotically flat setting, for

which it is essential to make use of the modified operator ΦW
(g,π) for W not necessarily 0. As an

application, we show that for any asymptotically flat initial data set without assuming the no-

kernel condition, one can solve for a new initial data set that interpolates to a model initial data

set in a way that the dominant energy condition also interpolates. Note that at vacuum data,

the modified operator Φ0
(g,π) recovers the usual constraint map, so that in particular the adjoint

operator (DΦ0
(gE,0))

∗ at the flat data has a kernel. In the asymptotic gluing, the deformation may

occur far into the asymptotically flat end, so we need to take into account the finite-dimensional

approximate kernel from the flat data, by employing an admissible family. This is carried out as

in the vacuum case, but we remark that the admissible family in our setting can include not only

the Kerr family, but also non-vacuum ones such as the Kerr-Newman family.

Let χ be a smooth cutoff function that is χ = 1 on the Euclidean unit ball B1 and χ = 0 outside

B2 with χ(1− χ) supported on a compact subset of B2 \B1. Let χR(y) = χ(y/R) be the rescaled

cutoff function.
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Theorem 1.4. Let k ≥ 0. Let (M, g, π) ∈ Ck+4,α
loc × Ck+3,α

loc be an asymptotically flat initial data

set with the ADM energy-linear momentum (E,P ). Given ε > 0, there exists R0 > 0 such that for

any R > R0, there is an initial data set (ḡ, π̄) ∈ Ck+2,α
loc × Ck+2,α

loc with

(ḡ, π̄) = (g, π) in BR

(ḡ, π̄) = (gθ, πθ) in M \B2R

for some (gθ, πθ) in the admissible family of (g, π) so that (ḡ, π̄) satisfies the dominant energy

condition

µ̄− |J̄ |ḡ ≥ χR(µ− |J |g) + (1− χR)(µθ − |Jθ|gθ)

with the strictly larger ADM energy Eθ > E and

|P θ − P | < Eθ − E < ε.

If, in addition, (g, π), (gθ, πθ) ∈ C∞, then we can achieve (ḡ, π̄) ∈ C∞.

Remark 1.5. If E ≥ |P | in the above theorem, then the ADM mass of (gθ, πθ) is strictly larger

than that of (g, π), i.e.
√

(Eθ)2 − |P θ|2 >
√
E2 − |P |2, by direct manipulations.

Note that our gluing results do not fully recover the vacuum gluing results even for vacuum initial

data sets, since we do not obtain the equality for the dominant energy condition. On the other

hand, our gluing construction includes the feature to bring up the ADM energies by promoting the

dominant energy condition. In particular, we can glue a Schwarzschild solution to a (different) Kerr

solution through a region where the dominant energy condition holds, which may not be feasible

by the vacuum theorem.

The paper is organized as follows. In Section 2, we introduce basic properties of the modified

constraint map and some analytical preliminaries, including an improved estimate for weighted

spaces (Proposition 2.10). In Section 3, we study localized deformation by the modified constraint

map and prove Theorem 1.1 and Theorem 1.3 (with k = 0). In Section 4, we prove asymptotic

gluing results to an admissible family, including Theorem 1.4 (with k = 0). In Section 5 and Section

6, we prove the local surjectivity theorems for the modified operator and the projected operator,

respectively; the analysis follows closely that from the vacuum case, but we include the details to

emphasize the uniformity of various required estimates.

2. Preliminaries

We use the Einstein summation convention, summing over repeated upper and lower indices,

throughout, and we use the convention that a semicolon denotes a covariant derivative, while a

comma denotes a partial derivative.

2.1. Initial data sets. Let n ≥ 3. An n-dimensional initial data set is an n-dimensional mani-

fold M equipped with a C2
loc Riemannian metric g and a C1

loc symmetric (2, 0) tensor K. The mass

density µ and the current density J are defined by

µ =
1

2
(Rg − |K|2g + (trgK)2)

J = divgK − d(trgK)



LOCALIZED DEFORMATION WITH DEC 5

where Rg = gijRij is the scalar curvature of g, with Rij the components of the Ricci tensor. It is

convenient for us to consider the momentum (2, 0) tensor

πij = Kij − (trgK)gij .

Abusing terminology slightly, we refer to (g, π) as an initial data set throughout this paper. The

initial data set is said to satisfy the dominant energy condition if

µ ≥ |J |g

holds everywhere in M .

The constraint map is defined by

Φ(g, π) =
(
R(g) + 1

n−1(trgπ)2 − |π|2g, divgπ
)

= (2µ, J).

The linearization is given by the following formula (see, for example, [11, Lemma 20])

DΦ|(g,π)(h,w) =
(
Lgh− 2hijπ

i
`π
j` − 2πjkw

k
j + 2

n−1trgπ(hijπ
ij + trgw),

(divgw)i − 1
2π

jkhjk;`g
`i + πjkhij;k + 1

2π
ij(trgh),j

)
.

(2.1)

Here all indices are raised or lowered with respect to g. The linearized scalar curvature operator

Lg(h) = −∆g(trgh) + divgdivg(h) − hijRij appears above. The formal L2 adjoint operator of

DΦ|(g,π) is given by

DΦ|∗(g,π)(f,X)

=
(
L∗gf +

(
2

n−1(trgπ)πij − 2πikπ
k
j

)
f

+ 1
2

(
gi`gjm(LXπ)`m + (Xk

;k)πij −Xiπ
k
j;k −Xjπ

k
i;k −Xk;mπ

kmgij −Xkπ
km
;m gij

)
,

−1
2(DgX)ij +

(
2

n−1(trgπ)gij − 2πij
)
f
)
,

(2.2)

where L∗gf = −(∆gf)g + Hessgf − fRic(g), LXπ is the Lie derivative, and DgX = LXg is the Lie

derivative operator (DgX)ij = Xi
;`g

`j + Xj
;`g

`i. See [7, Lemma 2.3] for n = 3, [11, Lemma 20] for

general n.

2.2. Modified constraint map. Let (g, π) be an initial data set and let W be a vector field. We

define the modified constraint map ΦW
(g,π) by

(2.3) ΦW
(g,π)(γ, τ) = Φ(γ, τ) + (0, 1

2γ · (divgπ +W )),

where (γ · Y )i = gijγjkY
k in local coordinates. The linearized operator at (g, π) is denoted by

DΦW
(g,π) = DΦW

(g,π)|(g,π) and has the following expression

DΦW
(g,π)(h,w) = DΦ|(g,π)(h,w) + (0, 1

2h · (divgπ +W )).(2.4)

The formal L2 adjoint operator has the expression

(DΦW
(g,π))

∗(f,X) = DΦ|∗(g,π)(f,X) +
(

1
4 [Xi(divgπ +W )j +Xj(divgπ +W )i], 0

)
,(2.5)

where the indices are lowered by g.
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2.3. Kernel of the adjoint operators. We include regularity results for any kernel element

(f,X) ∈ H2
loc(U) × H1

loc(U) where U ⊂ M is an open subset, from which we can obtain higher

order regularity depending on the smoothness of the initial data sets. The analysis is similar to the

scalar curvature operator in [5, Section 2.2].

Proposition 2.1. Let k ≥ 2, α ∈ (0, 1). Let (g, π) ∈ Ck,αloc (U) × Ck−1,α
loc (U) be an initial data set.

Suppose that (f,X) ∈ H2
loc(U) × H1

loc(U) satisfies DΦ|∗(g,π)(f,X) = 0 weakly. Then the following

holds:

(1) (f,X) ∈ Ck,αloc (U)× Ck−1,α
loc (U).

(2) If (g, π) ∈ Ck,α(U)× Ck−1,α(U), then (f,X) ∈ Ck−2,α(U)× Ck−2,α(U).

(3) If U is connected, the space of solutions (f,X) ∈ H2
loc(U) × H1

loc(U) to the homogeneous

equation DΦ|∗(g,π)(f,X) = 0 is finite-dimensional, and a non-trivial solution cannot vanish

on any open subset of U .

Proof. Let (f,X) ∈ H2
loc(U) × H1

loc(U) satisfy DΦ|∗(g,π)(f,X) = 0. Taking the trace of the first

component of (2.2) gives an equation for ∆gf . Using this equation, we can eliminate the term ∆gf

from the first component of the system DΦ|∗(g,π)(f,X) = 0 to obtain

f;ij = Aijf +BijkX
k + C`ijkX

k
;` ,(2.6)

where Aij , Bijk and C`ijk are functions locally computed as polynomials in the components gab, g
ab,

πab, ∂cgab, ∂
2
cdgab, and ∂cπab. The other components in DΦ|∗(g,π)(f,X) = 0 constitute the following

system:

1
2(DgX)ij =

(
2

n−1(trgπ)gij − 2πij
)
f.(2.7)

Thus DgX ∈ H1
loc(U), and by commuting the order of derivatives and using the Ricci formula, we

have [
(DgX)ij;k + (DgX)ki;j − (DgX)jk;i)

]
= (Xi;jk +Xi;kj) + (Xj;ik −Xj;ki) + (Xk;ij −Xk;ji)

= 2Xi;jk + (R`kji +R`ikj +R`ijk)X`,

(2.8)

where the sign convention for the Riemannian curvature tensor is so that the Ricci tensor Rjk =

R``jk. Along with (2.7), this implies that X ∈ H2
loc(U). By taking the trace of the first component

of DΦ|∗(g,π)(f,X) = 0 and the divergence of the other components, (f,X) satisfies a second order

elliptic linear system (see [7, Proposition 3.1] for n = 3 and [11, Lemma 20] for general n). The

desired interior regularity (f,X) ∈ Ck,αloc (U)× Ck−1,α
loc (U) follows from elliptic regularity.

Let γ = γ(t) be a geodesic. Because ∇γ′γ′ = 0, we have

(f ◦ γ)′′(t) = f;ij |γ(t)γ̇
i(t)γ̇j(t)(

D2X(γ(t))

dt2

)k
= (∇γ̇∇γ̇X)k = Xk

;ij |γ(t)γ̇
i(t)γ̇j(t).

(2.9)
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We have the formula for f;ij in (2.6). The term Xk
;ij is obtained from (2.8):

Xi
;jk =

1

2
gi` [(DgX)`j;k + (DgX)k`;j − (DgX)jk;`)]−

1

2
gi`C̃p`jkXp

= Ãijkf + B̃i`
jkf;` −

1

2
gi`C̃p`jkXp,

(2.10)

where Ãijk, B̃
i`
jk, C̃

`
ijk are locally computed as polynomials in gab, g

ab, πab, ∂cgab, ∂
2
cdgab, and ∂cπab.

For convenience, let {Ei(t), i = 1, . . . , n} be a parallel orthonormal frame field along γ. Let

X(γ(t)) = Xi(t)Ei(t), and X0(t) = f(γ(t)). Let Z(t) be the column vector with the compo-

nents X0(t), X1(t), . . . , Xn(t). Then by (2.9), (2.6), and (2.10), the vector satisfies a second-order

linear system of ordinary differential equations along any geodesic γ in U :

Z ′′(t) = A(t)Z ′(t) +B(t)Z(t),

where A(t) and B(t) are (n+ 1)× (n+ 1) matrix functions whose components are computed locally

as polynomials in gij , g
ij , πij , ∂kgij , ∂

2
k`gij , and ∂kπij , evaluated along γ. If U is connected, then

(f,X) is determined by its 1-jet at a point in U , and thus the dimension of the kernel is at most

(n+ 1)2, and any non-trivial element in the kernel cannot vanish on an open subset.

Boundary regularity for (f,X) follows from the ODE argument. By extending the initial data

set (g, π) in a neighborhood of the boundary, we may assume that U is in a manifold interior. Let

q ∈ ∂U and let 2r > 0 be the injectivity radius at q. For a point p ∈ U with d(p, q) < r, we can

extend (f,X) on Br(p) \ U along the unique geodesic in Br(p) starting at p with initial velocity

v = exp−1(x) that reaches x ∈ Br(p) \ U . By the smooth dependence of solutions of ODE on

parameters (note that exp−1 is Ck−1,α and the ODE system involves Ric(g), which accounts in

part for the ensuing regularity), we have that (f,X) ∈ Ck−2,α
loc (Br(p))× Ck−2,α

loc (Br(p)).

�

The above proposition also applies to the modified constraint operator because its adjoint op-

erator (DΦW
(g,π))

∗ differs from DΦ|∗(g,π) only by a zero-th order term. Essentially the same proof

implies the following statement.

Proposition 2.2. Let k ≥ 2, α ∈ (0, 1). Let (g, π) ∈ Ck,αloc (U) × Ck−1,α
loc (U) be an initial data

set. Let W ∈ Ck−2,α
loc (U) be a vector field. Suppose that (f,X) ∈ H2

loc(U) × H1
loc(U) satisfies

(DΦW
(g,π))

∗(f,X) = 0 weakly. Then the following holds:

(1) (f,X) ∈ Ck,αloc (U)× Ck−1,α
loc (U).

(2) If (g, π), (γ, τ) ∈ Ck,α(U) × Ck−1,α(U), W ∈ Ck−2,α(U), then (f,X) ∈ Ck−2,α(U) ×
Ck−2,α(U).

(3) If U is connected, the space of solutions (f,X) ∈ H2
loc(U) × H1

loc(U) to the homogeneous

equation (DΦW
(g,π))

∗(f,X) = 0 is finite-dimensional, and a non-trivial solution cannot vanish

on any open subset of U .

Definition 2.3. The kernel of (DΦW
(g,π))

∗ on U is the set K ⊂ H2
loc(U)×H1

loc(U) which consists of

those (f,X) that satisfy (DΦW
(g,π))

∗(f,X) = 0 weakly. The kernel of (DΦW
(g,π))

∗ is said to be trivial

on U if K = {0}.



8 JUSTIN CORVINO AND LAN-HSUAN HUANG

Example 2.4. Consider the flat data (gE, 0) on an open connected subset of R3 and W = 0.

Then the modified operator is the usual constraint map, and its formal L2 adjoint operator

DΦ|∗(gE,0)(f,X) = (−(∆gEf)gE + HessgEf,−1
2DgEX) has a ten-dimensional kernel K = K0 ⊕ K1,

where

K0 = span{1, x1, x2, x3}

K1 = span

{
∂

∂x1
,
∂

∂x2
,
∂

∂x3
, x× ∂

∂x1
, x× ∂

∂x2
, x× ∂

∂x3

}
.

2.4. Weighted Sobolev spaces. Let dg(x) = dg(x, ∂Ω) be the distance to the boundary with

respect to g; the boundary is assumed smooth, so d is as regular as g near ∂Ω. We will work with

uniformly equivalent metrics in a bounded open set U0 in the space of Cm(Ω) (m ≥ 2) Riemannian

metrics such that ‖dg‖Cm is uniformly bounded near ∂Ω. We will establish a framework uniformly

across U0 in what follows.

Let VΩ = {x ∈ Ω : dg(x) < r0 for some g ∈ U0} be a thin regular collar neighborhood of ∂Ω.

There is r0 ∈ (0, 1
2) sufficiently small so that a neighborhood of VΩ is foliated by smooth (as regular

as the metric g is) level sets of dg and that dg(x) ≤ 1
2 for all x ∈ VΩ and g ∈ U0.

Let 0 < r1 < r0 be fixed. Define a smooth positive monotone function ρ̃ : (0,∞)→ R such that

ρ̃(t) = e−1/t for t ∈ (0, r1) and ρ̃(t) = 1 for t > r0. Let N be a fixed large number, chosen so that

N > max{4(4k − 3), 4C0}(2.11)

where C0 > 0 is the constant appearing in (5.3). While the discussion in this section holds for all

k ≤ m, in this paper we only apply (2.11) of the case k ≤ 2 in the variational argument in Section 5.

Notation 2.5 (Exponential weight function). Let ρg be the positive function on Ω defined by

ρg(x) = (ρ̃ ◦ dg(x))N .

Let L2
ρg(Ω, g) be the set of functions or tensor fields u such that |u|ρ

1
2
g ∈ L2(Ω, g) with the norm

defined by

‖u‖L2
ρg (Ω,g) =

(∫
Ω
|u|2ρg dµg

) 1
2

.

The pairing 〈u, v〉L2
ρg (Ω,g) = 〈uρ

1
2
g , vρ

1
2
g 〉L2(Ω,g) makes L2

ρg(Ω, g) a Hilbert space. Let Hk
ρg(Ω, g) be

the Hilbert space of functions or tensor fields whose covariant derivatives up to and including order

k with respect to g are also in L2
ρg(Ω, g) with the norm defined as (where I is a multi-index)

‖u‖2Hk
ρg

(Ω,g) =

k∑
|I|=0

‖∇Igu‖2L2
ρg (Ω,g) =

k∑
|I|=0

∫
Ω
|∇Igu|2ρg dµg.

By [7, Lemma 2.1], Hk(Ω, g) (and hence C∞(Ω)) is dense in Hk
ρg(Ω, g). We note that the tensor

fields in Hk(Ω, g) are the same across g, and while we can further shrink U0 so that the norms are

equivalent for g ∈ U0 as well, the weighted norms Hk
ρg(Ω, g) may not be equivalent as g varies in

U0. (Note that they would be equivalent if ρ were a polynomial weight function, i.e. ρ̃(t) = t near

the boundary, and such a weight can be used for simplicity to establish the finite regularity results

[5, 7].) We often suppress Ω and g from the notation when it is clear from the context.
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It is useful to compare the norms ‖u‖Hk
ρg

and ‖uρ
1
2
g ‖Hk . We shall show that u ∈ Hk

ρg implies

‖uρ
1
2
g ‖Hk ≤ C‖u‖Hk

ρg
,

where the constant C is uniform in U0.

We begin with basic lemmas for which we work at a fixed metric g ∈ Ck(Ω) and write d = dg

and ρ = ρg; we note explicit dependence of the constants in the estimates so that the estimates

will hold uniformly across U0.

Lemma 2.6. Let N ≥ 1. There is a constant C > 0 independent of N (depending only on k,

‖ log ρ̃‖Ck([r1,r0]) and ‖d‖Ck(VΩ)) such that

|∇k(ρ
1
2 )| ≤ CNkρ

1
2d−2k.

holds on Ω.

Proof. By direct computation,

∇(ρ
1
2 )(x) =


1
2Nρ

1
2d−2∇d if 0 < d(x) ≤ r1

1
2Nρ

1
2d−2

(
d2(log ρ̃)′(d)

)
∇d if r1 ≤ d(x) ≤ r0

0 if d(x) ≥ r0

.(2.12)

This implies the estimate for k = 1. The estimate for k > 1 follows from induction. �

Lemma 2.7. Let N ≥ 1. There is r2 ∈ (0, r1) independent of N (depending only on ‖∆d‖C0(VΩ))

such that if 0 < d(x) ≤ r2, we have

(2.13)
1

2
N2d−4ρ ≤ ∆ρ.

Proof. By direct computation, for 0 < d(x) < r1,

∆ρ = N2d−4ρ(1 +N−1d2∆d− 2N−1d).

If r2 is sufficiently small, for 0 < d(x) ≤ r2,

1 +N−1d2∆d− 2N−1d ≥ 1− r2
2‖∆d‖C0(VΩ) − 2r2 ≥

1

2
.

�

In the next lemma we use a cutoff function ξ = ξg to handle estimates near the boundary. Let

0 ≤ ξg ≤ 1 be smooth with ξg = 0 on the compact subset {x ∈ Ω : dg(x) ≥ r2} and ξg = 1 in a

collar neighborhood {x ∈ Ω : dg(x) ≤ r2/2} of ∂Ω with |∇ξ|g ≤ 4/r2. In the following lemma, u

can be a function or a tensor field.

Lemma 2.8. For j ∈ Z+, and for u ∈ Cj(Ω), if N ≥ 4(4j − 3), then∫
Ω
ξ|u|2d−4jρ dµg ≤

(
4

N

)j ∫
Ω
ξ|∇ju|2ρ dµg

+

j∑
i=1

(
4

N

)j+1−i
sup

Ω
(|∇ξ|d−4i+2)‖∇j−iu‖2L2

ρ(Ω).
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Proof. Multiplying ξ|u|2d−4j+4 to (2.13) and noting |∇ρ| ≤ Nd−2ρ and d ≤ 1 in the supports of ξ

and ∇ξ by (2.12), we have

1

2
N2

∫
Ω
ξ|u|2d−4jρ dµg ≤

∫
Ω
ξ|u|2d−4j+4∆ρ dµg

≤
∫

Ω

[
2ξ|∇u||u|d−4j+4 + (4j − 4)ξ|u|2d−4j+3 + |∇ξ||u|2d−4j+4

]
|∇ρ| dµg

≤ N
∫

Ω

[
2ξ|∇u||u|d−4j+2 + (4j − 4)ξ|u|2d−4j+1 + |∇ξ||u|2d−4j+2

]
ρ dµg

≤ N
(

(4j − 3)

∫
Ω
ξ|u|2d−4jρ dµg +

∫
Ω
ξ|∇u|2d−4j+4ρ dµg + sup

Ω
(|∇ξ|d−4j+2)‖u‖2L2

ρ

)
,

where we applied the AM-GM inequality in the last inequality. Absorbing the first term into the

left hand side, we have∫
Ω
ξ|u|2d−4jρ dµg ≤

4

N

∫
Ω
ξ|∇u|2d−4j+4ρ dµg +

4

N
sup

Ω
(|∇ξ|d−4j+2)‖u‖2L2

ρ
.

This proves the case j = 1. The case j > 1 follows by induction.

�

Corollary 2.9. Let u ∈ Hk
ρ (Ω) and N ≥ 4(4k − 3). For j = 0, 1, . . . , k,∫

Ω
|∇k−ju|2d−4jρ dµg ≤ C‖u‖2Hk

ρ (Ω),

where C depends on N , j and r2.

Proof. By density, it suffices to prove the estimate for u ∈ C∞(Ω). By Lemma 2.8,∫
Ω
|∇k−ju|2d−4jρ dµg

=

∫
Ω
ξ|∇k−ju|2d−4jρ dµg +

∫
Ω

(1− ξ)|∇k−ju|2d−4jρ dµg

≤
(

4

N

)j ∫
Ω
ξ|∇ku|2ρ+

j∑
i=1

(
4

N

)j+1−i
sup

Ω
(|∇ξ|d−4i+2)‖∇k−iu‖2L2

ρ

+ sup
Ω

((1− ξ)d−4j)‖∇k−ju‖2L2
ρ
.

(2.14)

This implies the desired inequality. �

Proposition 2.10. Let u ∈ Hk
ρ (Ω) and N ≥ 4(4k − 3). Then

‖uρ
1
2 ‖Hk(Ω) ≤ C‖u‖Hk

ρ (Ω),

where C depends on N , k, r2, ‖ log ρ̃‖Ck([r1,r0]) and ‖d‖Ck(VΩ).

Proof. Recall

‖uρ
1
2 ‖2Hk =

k∑
j=0

‖∇j(uρ
1
2 )‖2L2 .
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We may assume u ∈ C∞(Ω), using density. By Lemma 2.6, for some constants Cij ,

|∇j(uρ
1
2 )| ≤ |∇ju|ρ

1
2 +

j∑
i=1

Cij |∇j−iu| |∇i(ρ
1
2 )|

≤ |∇ju|ρ
1
2 + C

j∑
i=1

N i|∇j−iu|d−2iρ
1
2 .

Therefore,

‖∇j(uρ
1
2 )‖2L2 =

∫
Ω
|∇j(uρ

1
2 )|2 dµg

≤ 2

∫
Ω
|∇ju|2ρ dµg + C2N2j

j∑
i=1

∫
Ω
|∇j−iu|2d−4iρ dµg.

This implies the desired estimate by Corollary 2.9. �

2.5. Weighted Hölder spaces. Here we follow the idea of [3] to consider weighted Hölder norms

in small balls Bφ(x)(x) that cover Ω. The weight function φ = φg satisfies the following properties

with uniform estimates across g in a Cm(Ω) neighborhood U0. We suppress the subscript g in

φ, d, ρ,∇, when the context is clear. Recall the neighborhood VΩ defined in the previous section.

Proposition 2.11. For g ∈ U0, we define φ(x) = (d(x))2 in VΩ. There exists a constant C > 0,

uniform across U0, such that we can extend φ to Ω with 0 < φ < 1 and with the following properties.

(1) φ has a positive lower bound on Ω \ VΩ uniformly in g ∈ U0, and for each x, Bφ(x)(x) is

contained in a coordinate ball of Ω.

(2) For x ∈ Ω and k ≤ m, we have

|φkρ−1∇kρ| ≤ C.

(3) For x ∈ Ω and for y ∈ Bφ(x)(x), we have

C−1ρ(y) ≤ ρ(x) ≤ Cρ(y)

C−1φ(y) ≤ φ(x) ≤ Cφ(y).
(2.15)

Proof. (1) is obvious. (2) follows by Lemma 2.6. It is clear that (3) holds for x ∈ Ω \ VΩ and

y ∈ Bφ(x)(x), since both ρ and φ have positive uniform lower bounds. For x ∈ VΩ and y ∈ Bφ(x)(x),

the triangle inequality implies d(x) − φ(x) ≤ d(y) ≤ d(x) + φ(x). The desired estimates follows

since φ = d2 and d ≤ 1
2 in VΩ. �

Let r, s ∈ R and ϕ = φrρs. For u ∈ Ck,αloc (Ω), we define the weighted Hölder norms ‖u‖
Ck,αφ,ϕ(Ω)

by

‖u‖
Ck,αφ,ϕ(Ω)

= sup
x∈Ω

 k∑
j=0

ϕ(x)φj(x)‖∇jgu‖C0(Bφ(x)(x)) + ϕ(x)φk+α(x)[∇kgu]0,α;Bφ(x)(x)

 .

Note that φ is to make the norm scaling invariant with respect to the size of the ball. The weighted

Hölder space Ck,αφ,ϕ(Ω) consists of Ck,αloc (Ω) functions or tensor fields with finite Ck,αφ,ϕ(Ω) norm. If

u ∈ Ck,αφ,ϕ(Ω), then u is dominated by ϕ−1 in the sense that u = O(ϕ−1) and ∇ju = O(ϕ−1φ−j)

near the boundary. The norms are equivalent to those introduced in [3, Appendix A] (cf. [6]).
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Note that differentiation is a continuous map from Ck,αφ,ϕ to Ck−1,α
φ,φϕ . For u ∈ Ck,αφ,ϕ(Ω), v ∈ Ck,α(Ω)

we have uv ∈ Ck,αφ,ϕ(Ω) with

‖uv‖
Ck,αφ,ϕ(Ω)

≤ C‖u‖
Ck,αφ,ϕ(Ω)

‖v‖Ck,α(Ω)

where C depends only on k. Furthermore, using Lemma 2.6, it follows that multiplication by ρ is

a continuous map from Ck,αφ,ϕ to Ck,α
φ,ϕρ−1 .

We will use the following Banach spaces Bk(Ω) (for functions or tensor fields):

Bk(Ω) = Ck,α
φ,φ4−k+n

2 ρ−
1
2
(Ω) ∩ L2

ρ−1(Ω) (for k = 0, 1, 2)

B3(Ω) = C3,α

φ,φ1+n
2 ρ

1
2
(Ω) ∩H1

ρ (Ω)

B4(Ω) = C4,α

φ,φ
n
2 ρ

1
2
(Ω) ∩H2

ρ (Ω) ,

with the Banach norms:

‖u‖Bk(Ω) = ‖u‖
Ck,α

φ,φ
4−k+n

2 ρ
− 1

2

(Ω)
+ ‖u‖L2

ρ−1 (Ω) (for k = 0, 1, 2)

‖X‖B3(Ω) = ‖X‖
C3,α

φ,φ
1+n

2 ρ
1
2

(Ω)
+ ‖X‖H1

ρ(Ω)

‖f‖B4(Ω) = ‖f‖
C4,α

φ,φ
n
2 ρ

1
2

(Ω)
+ ‖f‖H2

ρ(Ω).

It is clear that these Banach spaces contain the smooth functions with compact supports in Ω, and

that B2(Ω) ⊂ B1(Ω) ⊂ B0(Ω).

We will frequently use the product norms:

‖(ψ, V )‖B0×B1 = ‖ψ‖B0 + ‖V ‖B1

‖(h,w)‖B2×B2 = ‖h‖B2 + ‖w‖B2

‖(f,X)‖B4×B3 = ‖f‖B4 + ‖X‖B3 .

3. Localized deformation with the no-kernel condition

In this section, we show how to locally deform an initial data set while controlling the dominant

energy inequality. To do this, we employ a modified constraint operator to handle the first order

change in |J |g under the perturbation.

The modified map

ΦW
(g,π)(γ, τ) = Φ(γ, τ) + (0, 1

2γ · (divgπ +W ))

differs from the usual constraint map only by a term of lower order in derivatives and hence has

similar analytic properties as the usual constraint map. In particular, we have the following local

surjectivity theorem. The proof, which is deferred to Section 5, is a straightforward modification of

the proof for the constraint map in [7]. In our proof, we obtain uniform estimates in a neighborhood

of an arbitrary initial data set, which sharpen the estimates in [7], for the usual constraint map at

a fixed initial data set or in a neighborhood of the flat data.

Recall that we let Ω be a compact manifold with smooth boundary, with Ω the manifold interior

of Ω. For notational simplicity, we denote DΦW
(g,π) = DΦW

(g,π)|(g,π) and its formal L2 adjoint operator

by (DΦW
(g,π))

∗.
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Theorem 3.1. Let (g0, π0) ∈ C4,α(Ω)× C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω) be a

vector field. Suppose that the kernel of (DΦW0

(g0,π0))
∗ is trivial on Ω. Then there is a neighborhood U

of (g0, π0) in C4,α(Ω)×C3,α(Ω), a neighborhood W of W0 in C2,α(Ω), and constants ε > 0, C > 0

such that for (g, π) ∈ U , W ∈ W, and for (ψ, V ) ∈ B0 ×B1 with ‖(ψ, V )‖B0×B1 ≤ ε, there is a pair

of symmetric tensors (h,w) ∈ B2 × B2 with ‖(h,w)‖B2×B2 ≤ C‖(ψ, V )‖B0×B1 such that the initial

data set (g + h, π + w) satisfies

ΦW
(g,π)(g + h, π + w) = ΦW

(g,π)(g, π) + (2ψ, V ),

where the weighted norms are taken on Ω with respect to g.

Remark 3.2. Rewriting the identity ΦW
(g,π)(g + h, π + w) = ΦW

(g,π)(g, π) + (2ψ, V ) in terms of the

usual constraint map, we see that (h,w) solves

Φ(g + h, π + w) = Φ(g, π) + (2ψ, V )−
(
0, 1

2h · (divgπ +W )
)
.

The following computational lemma gives the motivation behind our definition of the modified

map.

Lemma 3.3. Let (g, π) be an initial data set. Suppose the initial data set (ḡ, π̄) = (g + h, π + w)

satisfies

ΦV
(g,π)(g + h, π + w) = ΦV

(g,π)(g, π) + (2ψ, V ).

If |h|g ≤ 3, then

µ̄− |J̄ |ḡ ≥ µ+ ψ − |J + V |g,

where (µ̄, J̄) and (µ, J) are the mass and current densities of (g, π) and (ḡ, π̄), respectively.

Proof. Denote by Y = J + V . By Remark 3.2,

µ̄ = µ+ ψ and J̄ = Y − 1

2
h · Y.

We compute the norm of J̄ with respect to ḡ below:

|J̄ |2ḡ = (g + h)ij

(
Y i − 1

2
(h · Y )i

)(
Y j − 1

2
(h · Y )j

)
= (g + h)ij

(
Y iY j − Y i(h · Y )j +

1

4
(h · Y )i(h · Y )j

)
= |Y |2g + hijY

iY j − gijY i(h · Y )j − hijY i(h · Y )j

+
1

4
|h · Y |2g +

1

4
hij(h · Y )i(h · Y )j

= |Y |2g −
3

4
|h · Y |2g +

1

4
hij(h · Y )i(h · Y )j

≤ |Y |2g.

�

Theorem 1.1 directly follows from Theorem 3.1 (setting W0 = 0) and Lemma 3.3. In particular,

by choosing V = 0 and ψ > 0 on Ω with ‖ψ‖B2 sufficiently small, we have an immediate corollary.
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Corollary 3.4. Let (Ω, g0, π0) be as in Theorem 3.1, with W0 = 0. Suppose that (g0, π0) satisfies

the dominant energy condition. Then there exists (h,w) ∈ B2(Ω)×B2(Ω) such that the initial data

set (ḡ, π̄) = (g0 + h, π0 + w) satisfies the strict dominant energy condition µ̄ > |J̄ |ḡ in Ω.

Definition 3.5. In the sections which follow, we will consider estimates where some parameter

fields (initial data sets, auxiliary cutoff functions) may be allowed to vary. In the case where we

can choose a single constant so that the estimate holds for all nearby parameter fields (with respect

to specified norms), we say that the constant depends locally uniformly on the fields.

We apply Lemma 3.3 to initial data sets which may not satisfy the dominant energy condition

but have an error from interpolation. The following computational lemma suggests an appropriate

choice of (ψ, V ) to absorb the error term.

Lemma 3.6. Let (g1, π1), (g2, π2) ∈ C2,α(Ω) × C2,α(Ω) be initial data sets. Let 0 ≤ χ ≤ 1 be a

smooth function such that χ(1 − χ) is supported on a compact subset of Ω. Denote by (g, π) =

χ(g1, π1) + (1− χ)(g2, π2). Let

(2ψ, V ) = −Φ(g, π) + χΦ(g1, π1) + (1− χ)Φ(g2, π2) + (2ψ0, 0)

for some ψ0 ∈ B0. Then

‖(ψ, V )‖B0×B1 ≤ C(‖χ(1− χ)‖B0 + ‖∇χ‖B1)‖(g1 − g2, π1 − π2)‖C2,α×C2,α + ‖ψ0‖B0

where the constant C depends locally uniformly on (g1, π1), (g2, π2) ∈ C2,α(Ω) × C2,α(Ω) and on

χ ∈ C2,α(Ω), and the norms are taken on Ω (with respect to a fixed metric, say g1).

Furthermore,

|J + V |g = |χJ1 + (1− χ)J2|g
≤ χ|J1|g1 + (1− χ)|J2|g2 + χ(1− χ)(|g1 − g2|g1 |J1|g1 + |g1 − g2|g2 |J2|g2),

where J, J1, J2 are the current densities of (g, π), (g1, π1), (g2, π2), respectively.

Proof. The estimate of (ψ, V ) follows by Lemma A.2. The inequality for J + V follows by direct

computation:

|χJ1 + (1− χ)J2|g ≤ χ|J1|g + (1− χ)|J2|g
≤ χ|J1|g1 + (1− χ)|J2|g2

+ χ(1− χ)|g1 − g2|g1 |J1|g1 + (1− χ)χ|g1 − g2|g2 |J2|g2 .

(3.1)

�

We now prove Theorem 1.3 for k = 0, and the version of higher k is handled later in Section 6.4.

The statement can be expressed more precisely as follows.

Theorem 3.7. Let (g0, π0) ∈ C4,α(Ω)× C3,α(Ω) be an initial data set. Suppose that the kernel of

(DΦ0
(g0,π0))

∗ is trivial in Ω. Let 0 ≤ χ ≤ 1 be a smooth function such that χ(1− χ) is supported on

a compact subset of Ω. Then there exists a neighborhood U of (g0, π0) in C4,α(Ω) × C3,α(Ω) and

ε > 0 such that for (g1, π1), (g2, π2) ∈ U , if we set (g, π) = χ(g1, π1) + (1 − χ)(g2, π2), there exists
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(h,w) ∈ B2(Ω)×B2(Ω) with ‖(h,w)‖B2×B2 ≤ ε such that the initial data set (ḡ, π̄) = (g+ h, π+w)

satisfies

µ̄− |J̄ |ḡ ≥ χ(µ1 − |J1|g1) + (1− χ)(µ2 − |J2|g2).

Proof. Let U , W, ε and C > 1 be as in Theorem 3.1 (with W0 = 0). Choose (ψ, V ) below, as in

Lemma 3.6,

(2ψ, V ) = −Φ(g, π) + χΦ(g1, π1) + (1− χ)Φ(g2, π2) + (2ψ0, 0),

where ψ0 ∈ B0 is a smooth function, positive on Ω, with ‖ψ0‖B0 ≤ ε
2C . For U sufficiently small, we

have V ∈ W and ‖(ψ, V )‖B0×B1 ≤ ε
C by Lemma 3.6.

Applying Theorem 3.1 gives (h,w) that satisfies

ΦV
(g,π)(g + h, π + w) = ΦV

(g,π)(g, π) + (2ψ, V ).

The mass and current densities (µ̄, J̄) of the deformed initial data set (ḡ, π̄) = (g+h, π+w) satisfy,

by Lemma 3.3,

µ̄− |J̄ |ḡ ≥ µ+ ψ − |J + V |g = χµ1 + (1− χ)µ2 + ψ0 − |χJ1 + (1− χ)J2|g.

Applying Lemma 3.6 to estimate the last term yields

µ̄− |J̄ |ḡ ≥ χ(µ1 − |J1|g1) + (1− χ)(µ2 − |J2|g2)

+ ψ0 − χ(1− χ)(|g1 − g2|g1 |J1|g1 + |g1 − g2|g2 |J2|g2).

Because ψ0 > 0 on Ω and χ(1 − χ) is supported on a compact subset of Ω, we have, by further

shrinking U if necessary,

ψ0 ≥ χ(1− χ)(|g1 − g2|g1 |J1|g1 + |g1 − g2|g2 |J2|g2).

�

Remark 3.8. It is clear from the proof that we can obtain the strict dominant energy condition

in Ω by choosing ψ0 strictly greater than the error term. Also, the theorem still holds if χ(1−χ) is

supported in Ω with an appropriate fall-off rate toward the boundary so that it can be dominated

by ψ0.

As another application, we provide a refined version of the density-type results with the domi-

nant energy condition. A density-type theorem says that given an asymptotically flat initial data

set (M, g, π), there exists a sequence of initial data sets (M, gk, πk) with the desired asymptotic

properties, e.g. harmonic asymptotics (cf. [11, Theorem 18]), such that (gk, πk) converges to (g, π)

in some appropriate topology. If (g, π) satisfies the no-kernel condition, then the approximate se-

quence can be made to be identical to (g, π) in a fixed compact set. The reason is that an initial

data set interpolating between (g, π) and (gk, πk) would utimately satisfy the no-kernel condition

in a fixed compact set for k sufficiently large, so one can perform the localized deformation to

reimpose the dominant energy condition.

Corollary 3.9. Let (M, g, π) be a C4,α
loc ×C

3,α
loc asymptotically flat initial data set with the dominant

energy condition. Let BR be a coordinate ball of radius R. Suppose the kernel of (DΦ0
(g0,π0))

∗ is

trivial in BR2 \ BR1, R2 > R1. For any sequence of asymptotically flat initial data sets (gk, πk)
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with the dominant energy condition that converges to (g, π) in C4,α
loc (M)×C3,α

loc (M), there exists k0

and a sequence (ḡk, π̄k) ∈ C2,α
loc (M)× C2,α

loc (M) with the dominant energy condition for k ≥ k0 that

converges to (g, π) in C2,α
loc (M)× C2,α

loc (M) and

(ḡk, π̄k) = (g, π) in BR1

(ḡk, π̄k) = (gk, πk) in M \BR2 .

Remark 3.10. Clearly from the proof we can reverse the roles of (g, π) and (gk, πk) and construct

the converging sequence of initial data sets which is (g, π) outside BR2 and is (gk, πk) in BR1 .

4. Gluing in the asymptotically flat region

In this section, we prove gluing results with the dominant energy condition for initial data sets

that are arbitrarily close to the flat data. We focus on the three-dimensional case since our examples

of admissible families are in three dimensions (see Section 4.2), but the analysis presented here can

be generalized to higher dimensions. Please refer to Appendix B for the definitions of asymptotically

flat initial data sets and the ADM integrals.

4.1. Rescaling. Given any pair of asymptotically flat initial data sets defined on the exterior of a

ball in R3, they are both close to the flat data on AR for R large, by the asymptotic flatness. Hence

the error from interpolation between those two initial data sets is small enough, for R sufficiently

large, so that the localized deformation is applicable. Instead of working on AR, it is convenient to

perform the analysis over a fixed region A1 via rescaling.

Notation 4.1. Let BR be an open ball of radius R in R3. Denote by AR = B2R \ BR the open

annulus. Let χ be a smooth cutoff function that is χ = 1 on B1 and χ = 0 outside B2 with χ(1−χ)

supported on a compact subset of A1. Denote by χR(y) = χ(y/R) the rescaled cutoff function.

We make some general remarks on rescaling. Let (g, π) be an initial data set on R3 \B. Here we

write π as a (0, 2) tensor with the indices lowered by g. Let FR : A1 → AR be the diffeomorphism

sending x 7→ y = Rx. Define the rescaled initial data set on A1, via pullback, as follows:

gR = R−2F ∗Rg, πR = R−1F ∗Rπ.

Noting (FR)∗ (∂xi) = R∂yi , in coordinates we have

gR(∂xi , ∂xj )(x) = R−2g((FR)∗(∂xi), (FR)∗(∂xj ))(y) = g(∂yi , ∂yj )(y)

πR(∂xi , ∂xj )(x) = R−1π((FR)∗(∂xi), (FR)∗(∂xj ))(y) = Rπ(∂yi , ∂yj )(y).

The constraint operator is scaling invariant in the sense that

Φ(gR, πR) = R2F ∗RΦ(g, π).

If (g, π) is asymptotically flat at the rate (q, q0) with respect to y, then the rescaled initial data

sets on A1 satisfy

|gRij − δij | ≤ CR−q, |πRij | ≤ CR−q, |Φ(gR, πR)| ≤ CR−1−q0
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and for a multi-index I with |I| ≤ k,

|∂IxgRij(x)| = |R|I|∂Iygij(y)| ≤ CR−q

|∂IxπRij(x)| = |R1+|I|∂Iyπij(y)| ≤ CR−q,

where C depends on ‖g − gE‖Ck−q(AR), ‖π‖Ck−1−q(AR).

The following computational lemma says that the interpolation between µ and J gives the

interpolation between the dominant energy inequality, up to a controllable error term. The lemma

will be applied to initial data sets on A1 that come from rescaling.

Lemma 4.2. Let (g1, π1), (g2, π2) ∈ C2,α(A1)×C2,α(A1) be initial data sets on A1. Suppose C1 > 0

is such that

‖(g1 − g2, π1 − π2)‖C2,α×C2,α ≤ C1R
−q.

Let (g, π) = χ(g1, π1) + (1− χ)(g2, π2), and let

(2ψ, V ) = −Φ(g, π) + χΦ(g1, π1) + (1− χ)Φ(g2, π2) + (2ψ0R
−1−q0 , 0),

for some ψ0 ∈ B0(A1). Then

‖(ψ, V )‖B0×B1 ≤ CR−min(q,1+q0),(4.1)

where C depends on C1, ‖ψ0‖B0 , ‖χ(1 − χ)‖B0 , ‖∇χ‖B1 and locally uniformly on (g1, π1), (g2, π2) ∈
C2,α(A1) × C2,α(A1) and χ ∈ C2,α(A1). Note all norms are taken on A1, with respect to a fixed

metric, say g1.

Furthermore, if ‖J1‖C0 + ‖J2‖C0 ≤ C1R
−1−q0, and if there exists (h,w) so that the initial data

set (ḡ, π̄) = (g + h, π + w) satisfies

ΦV
(g,π)(g + h, π + w) = ΦV

(g,π)(g, h) + (2ψ, V ),

with |h|g ≤ 3, then

µ̄− |J̄ |ḡ ≥ χ(µ1 − |J1|g1) + (1− χ)(µ2 − |J2|g2)

+
(
ψ0 − 2C2

1χ(1− χ)R−q
)
R−1−q0 ,

(4.2)

where (µ̄, J̄), (µ̄1, J̄1), (µ̄2, J̄2) are the mass and current densities of (ḡ, π̄), (g1, π1), (g2, π2), respec-

tively.

Proof. By Lemma A.2, we have the following

‖(2ψ, V )‖B0×B1 = ‖χΦ(g1, π1) + (1− χ)Φ(g2, π2)− Φ(g, π)‖B0×B1 + ‖2ψ0‖B0R
−1−q0

≤ CR−min(q,1+q0).

By Lemma 3.6, we have

|J + V |g ≤ χ|J1|g1 + (1− χ)|J2|g2

+ χ(1− χ)(|g1 − g2|g1 |J1|g1 + |g1 − g2|g2 |J2|g2).

Lemma 3.3 gives µ̄− |J̄ |ḡ ≥ µ+ ψ − |J + V |g, so that inequality (4.2) follows using

µ̄ = χµ1 + (1− χ)µ2 + ψ0R
−1−q0 .

�
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For R large, the rescaled initial data set (gR, πR) on A1 is close to the flat data (gE, 0). Hence

the adjoint of the linearized operator at (gR, πR) has an approximate kernel comprised of the ten-

dimensional kernel K of the flat data (see Example 2.4), in the sense that elements of unit norm

in K are mapped by the adjoint operator at (gR, πR) to elements of small norm. Thus there is

no uniform coercivity estimate for the adjoint operator at (gR, πR) as R tends to infinity. The

following theorem, whose proof is deferred to Section 6, says that the modified constraint operator

can be solved transverse to the approximate kernel.

Let K be the kernel of (DΦW0

(g0,π0))
∗, which is finite-dimensional by Proposition 2.2. Let U0 be

a bounded neighborhood of a Riemannian metric g0, as in Section 2.4. We fix a smooth bump

function ζ supported in Ω0 ⊂ Ω, where the compact set Ω0 is chosen so that ρg ≡ 1 on Ω0 for all

g ∈ U0. Denote by Sg the L2(dµg)-orthogonal complement of ζK. Let Πg : B0×B1 → (B0×B1)∩Sg
be the L2(dµg)-orthogonal projection.

Theorem 4.3. Let (g0, π0) ∈ C4,α(Ω)× C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω) be a

vector field. There is a neighborhood U of (g0, π0) in C4,α(Ω)×C3,α(Ω), a neighborhood W of W0 in

C2,α(Ω), and constants ε > 0, C > 0 such that for (g, π) ∈ U , W ∈ W, and (ψ, V ) ∈ B0(Ω)×B1(Ω)

with ‖(ψ, V )‖B0×B1 ≤ ε, there is a pair of symmetric tensors (h,w) ∈ B2(Ω)× B2(Ω) such that the

initial data set (g + h, π + w) satisfies

Πg0 ◦ ΦW
(g,π)(g + h, π + w) = Πg0 ◦ ΦW

(g,π)(g, π) + Πg0(2ψ, V )

with

‖(h,w)‖B2×B2 ≤ C‖Πg0(ψ, V )‖B0×B1 .

Here the weighted norms are all taken on Ω with respect to g. The solution (h,w) ∈ B2×B2 depends

continuously on (ψ, V ) ∈ B0 × B1.

We now apply this in the setting we study here, interpolating µ and J .

Proposition 4.4. Let (g1, π1) and (g2, π2) ∈ C4,α
loc ×C

3,α
loc be asymptotically flat initial data sets at

the rate (q, q0) on R3 \ B. Consider the corresponding rescaled initial data sets (gR1 , π
R
1 ), (gR2 , π

R
2 )

on A1. Define the initial data set

(γR, τR) = χ(gR1 , π
R
1 ) + (1− χ)(gR2 , π

R
2 ).

Let

(2ψR, V R) = −Φ(γR, τR) + χΦ(gR1 , π
R
1 ) + (1− χ)Φ(gR2 , π

R
2 ) + (2ψ0R

−1−q0 , 0)

for some ψ0 ∈ B0. There is R0 > 0 and C > 0, depending only on gE, χ, ‖ψ0‖B0, ‖(g1 −
gE, π1)‖

C2,α
−q ×C

2,α
−1−q

, ‖(g2 − gE, π2)‖
C2,α
−q ×C

2,α
−1−q

, such that for each R > R0, there exists a pair of

symmetric tensors (hR, wR) ∈ B2(A1) × B2(A1) such that the initial data set (γR + hR, τR + wR)

satisfies

ΠgE ◦ ΦV R

(gE,0)(γ
R + hR, τR + wR) = ΠgE ◦ ΦV R

(gE,0)(γ
R, τR) + ΠgE(2ψR, V R)

with the estimate

‖(hR, wR)‖B2×B2 ≤ CR−min(q,1+q0).(4.3)
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Proof. Apply Theorem 4.3 with (g0, π0) = (gE, 0) and W0 = 0. By Lemma 4.2 and Lemma 6.1, we

have for R sufficiently large V R ∈ W and

‖Πg0(ψR, V R)‖B0×B1 ≤ CR−min(q,1+q0) < ε.

Therefore we can apply Theorem 4.3 to solve for (hR, wR) with the estimate (4.3). �

4.2. An admissible family and gluing. As observed in [7], the 10-dimensional approximate

kernel in the asymptotically gluing is ultimately connected to the 10-dimensional parameter space

of an admissible family. An improved rescaling argument to handle a more general situation is

discussed in [2]. However, since neither paper states in sufficiently explicit terms the requisite

conditions on an admissible family that can be used to model the asymptotics of initial data sets

by asymptotic gluing, we proceed to do so now.

In order to handle initial data sets whose center of mass and angular momentum integrals may

not converge, we define the center of mass and angular momentum integrals of (g, π) at the finite

radius R as

CRi =
1

16π
BR

(g,π)(x
i, 0), J Rk =

1

8π
BR

(g,π)(0, x×
∂

∂xk
).

It is clear that CR,J R are continuous in R. If (g, π) is asymptotically flat at the rate q =

q0 = 1, then (CR,J R) = O(logR) as R tends to infinity. For other values of q, q0, (CR,J R) =

O(R1−min{1,q0,2q−1}). Note that if (g, π) satisfies the Regge-Teitelboim conditions, then (CR,J R)

converges to a pair of vectors (see, e.g. [7, 8, 14, 15]). We denote a = min{1, q0, 2q − 1} ∈ (0, 1].

Definition 4.5. Let (g, π) ∈ Ck+4,α
loc ×Ck+3,α

loc be an asymptotically flat initial data set on R3 \BR0 ,

at the rate (q, q0). Let S = {(gθ, πθ)}θ∈Θ be a family of Ck+4,α
loc ×Ck+3,α

loc asymptotically flat initial

data sets defined on R3 \BR0 , where the components of θ = (Eθ, P θ, Cθ,J θ) are the ADM energy,

linear momentum, center of mass, and angular momentum of (gθ, πθ). The family S is said to be an

admissible family for (g, π) if the following properties hold, with respect to a fixed asymptotically

flat coordinate chart:

(1) The map (gθ, πθ) 7→ θ ∈ Θ = Θ1 × Θ2 is a homeomorphism where Θ1 ⊂ R4, Θ2 ⊂ R6 are

open sets such that Θ1 contains (E,P ) of (g, π) and Θ2 = ∪R≥R0ΘR
2 where ΘR

2 is the ball

centered at (CR,J R) of radius R1−a logR.

(2) (gθ, πθ) satisfies the following uniformity conditions: there is a constant κ > 0 such that for

θ ∈ Θ1 ×ΘR
2 and for all R > R0,

‖(gθ − gE, πθ)‖C2
−q(R3\BR)×C1

−1−q(R3\BR) < κ

‖(µθ, Jθ)‖C0
−3−q0

(R3\BR) < κ
(4.4)

and

|BR
(gθ,πθ)(x

k, 0)− 16πCθk | ≤ κ|θ|2R−1

|BR
(gθ,πθ)(0, x×

∂

∂xk
)− 8πJ θk | ≤ κ|θ|2R−1.

(4.5)

Remark 4.6. The definition of the parameter set Θ1×ΘR
2 is set up in a way so that θ can be large

enough to account for the error terms from (CR,J R) and from the right hand side of (4.5), which

may compete with largeness of θ. This subtle balance shows up in Lemma 4.8 below in the degree
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argument. We remark that in Definition 4.5, the term |θ|2 appearing in (4.5) can be replaced by

|θ|κ2 for κ2 > 0. If q = q0 = 1, the same parameter set Θ1 × ΘR
2 is still valid. For other values of

q, q0, the radius of ΘR
2 needs to be modified accordingly, depending on κ2. This can be done by

tracking the exponents in the proof of Lemma 4.8.

Example 4.7. Let (g, π) be an asymptotically flat initial data set with E > |P |. Let Θ = Θ1×R6,

where (E,P ) ∈ Θ1 is a precompact open subset of {(a, b) ∈ R×R3 : a > |b|}. There is an admissible

vacuum family SKerr = {(gθ, πθ)}θ∈Θ for (g, π) obtained from the Kerr spacetime. Condition (1) is

shown in [3, Appendix F]. Inequalities (4.4) in Condition (2) follow from the asymptotic expansions

of (gθ, πθ) and compactness of Θ1. Inequalities (4.5) follows from a standard argument: by the

divergence theorem, BR
(gθ,πθ)

(xk, 0) − 16πCθk =
∫
M\BR x

k
∑

i,j(g
θ
ij,ij − gθii,jj) dx. The estimate then

follows by using the constraint equations to rewrite the integrand and estimate the resulting terms

in an obvious way. The inequality for the angular momentum can be obtained in the same fashion.

The same argument would also allow us to find an admissible non-vacuum family SKerr-Newman =

{(gθ, πθ)}θ∈Θ for (g, π) obtained from the Kerr-Newman spacetime for each fixed pair of electric

and magnetic charges. �

Admissible families will be used in an asymptotic gluing construction in Theorem 4.9 below,

and we want to highlight how the assumptions in Definition 4.5 will appear. The condition on the

parameter set ΘR
2 is to handle the scaling in the center of mass and angular momentum components

of a map IR, in order to be able to apply a degree argument as used in the following technical

lemma. The uniformity assumptions (4.4) and (4.5) will be used in the proof of the theorem to

establish the desired estimate of the error term IR0 , as appears in the following lemma.

Lemma 4.8. Let Θ1×ΘR
2 be as in Definition 4.5. Let IR : Θ1×ΘR

2 → R10 be a family of continuous

maps, continuously parametrized by R ∈ (R0,∞). Suppose that there is a constant C > 0 such that

for any θ = (Eθ, P θ, Cθ,J θ) ∈ Θ1 ×ΘR
2 and any R ≥ R0,

IR(θ) = (Eθ − E,P θ − P,R−1(Cθ − CR), R−1(J θ − J R)) + IR0 (θ),

where

|CR| ≤ C logR

|J R| ≤ C logR

|IR0 (θ)| ≤ C(R−a(logR)
1
2 + |θ|2R−2).

Then for each R sufficiently large, there exists θ ∈ Θ1 ×ΘR
2 such that IR(θ) = 0.

Proof. Let θR0 = (E,P, CR,J R). We first translate and rescale Θ1 × ΘR
2 , in order to employ a

degree argument over sets centered around the same point. Suppose Θ1 contains the ball centered

at (E,P ) of radius ε for some ε > 0. Let TR : Bε(0)×BR−a logR(0)→ Θ1 ×ΘR
2 be given by

TR(v, w) = (v,Rw) + θR0 .

The composition map satisfies

IR ◦ TR(v, w) = (v, w) + IR0 ◦ TR(v, w).
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Hence, for R sufficiently large, we have

|IR ◦ TR(v, w)− (v, w)| ≤ C(R−a(logR)
1
2 + |TR(v, w)|2R−2) < R−a logR,

where we use that θ = TR(v, w) ∈ Θ1×ΘR
2 and hence |θ| ≤ C|R1−a logR|. The rest of proof follows

from a standard degree argument (see, e.g. [16, Lemma 5.2]).

�

We now restate Theorem 1.4 for k = 0 in a more specific form and give a proof. The version for

higher k is discussed in Section 6.4

Theorem 4.9. Let (g, π) ∈ C4,α
loc ×C

3,α
loc be an asymptotically flat initial data set at the rate (q, q0)

on R3 \ B with the ADM energy-momentum (E,P ). Let ε > 0. There is a constant R0 > 0 such

that for R > R0, there is an initial data set (ḡ, π̄) ∈ C2,α
loc × C

2,α
loc such that

(ḡ, π̄) = (g, π) in BR

(ḡ, π̄) = (gθ, πθ) in M \B2R

for some (gθ, πθ) in the admissible family for (g, π), and (ḡ, π̄) satisfies the dominant energy con-

dition

µ̄− |J̄ |ḡ ≥ χR(µ− |J |g) + (1− χR)(µθ − |Jθ|gθ)

with the strictly larger ADM energy Eθ > E and

|P θ − P | < Eθ − E < ε.

Proof. We prove the case q = q0 = 1, as the proof for other values of q, q0 is similar. Given R ≥ 1

sufficiently large and θ ∈ Θ, we apply Proposition 4.4 with (g1, π1) = (g, π), (g2, π2) = (gθ, πθ) and

(γR, τR) = χ(gR, πR) + (1− χ)((gθ)R, (πθ)R). Let ψ0 ∈ B0(A1) be a fixed positive function in A1.

Define (ψR, V R), as in Proposition 4.4, by

(2ψR, V R) = −Φ(γR, τR) + χΦ(gR, πR) + (1− χ)Φ((gθ)R, (πθ)R) + (2ψ0R
−2, 0).

There exists (hR, wR) ∈ B2(A1) × B2(A1) (with the superscript θ omitted) such that (ḡR, π̄R) =

(γR + hR, τR + wR) solves the following projected problem, for some radial bump function ζ sup-

ported in A1,

ΦV R

(γR,τR)(ḡ
R, π̄R)− ΦV R

(γR,τR)(γ
R, τR)− (2ψR, V R) ∈ ζK,

where K is the kernel at the flat data (see Example 2.4). Fix a constant λ > 0. We show that, for

each R sufficiently large, there exists θ ∈ Θ1 ×ΘR
2 such that

ER(θ) = ΦV R

(γR,τR)(ḡ
R, π̄R)− ΦV R

(γR,τR)(γ
R, τR)− (2ψR, V R)− (λζR−2(logR)

1
2 , 0) = 0.

Note that (hR, wR) is independent of λ. We remark that the additional term (λζR−2(logR)
1
2 , 0)

from the kernel will help to bring up the ADM energy and also keep the dominant energy condition.

It suffices to show that ER(θ) is L2(dx)-orthogonal to K because K⊥ is transverse to ζK.

Consider the L2 projection IR(θ) : Θ1 × ΘR
2 → R10 onto K that sends θ to (e,p, c, j) where
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p = (p1, p2, p3), c = (c1, c2, c3), j = (j1, j2, j3):

e =
R

16π

∫
A1

ER(θ) · (1, 0) dx

pi =
R

8π

∫
A1

ER(θ) · (0, ∂

∂xi
) dx

ck =
R

16π

∫
A1

ER(θ) · (xk, 0) dx

j` =
R

8π

∫
A1

ER(θ) · (0, x× ∂

∂x`
) dx.

The map IR is continuous because (hR, wR) depends continuously on (ψR, V R), which is continuous

in θ by definition.

Expressing ER(θ) in terms of the usual constraint map, we have

ER(θ) = Φ(ḡR, π̄R) + ER2 (θ)− (λζR−2(logR)
1
2 , 0),

where

ER2 (θ) = −χΦ(gR, πR)− (1− χ)Φ((gθ)R, (πθ)R)− (2ψ0R
−2, 1

2h
R · (divγRτ

R + V R)).

The L2 projection of Φ(ḡR, π̄R) is handled exactly as in the vacuum case; estimates of the projection

are included in Lemma B.1 for which we employ the uniformity conditions, in particular (4.5). The

L2 projection of ER2 (θ) is of lower order because by using (4.4) and the estimates for (hR, wR) in

Proposition 4.4, we obtain
∣∣ER2 (θ)

∣∣
gE
≤ CR−2. Because ζ is radial, the L2 projection of the last

term −(λζR−2(logR)
1
2 , 0) is non-zero only onto the kernel element (1, 0), and we find∫

A1

λζR−2(logR)
1
2 dx = 16πλ̃R−2(logR)

1
2 > 0,

where λ̃ := (16π)−1
∫
A1
λζ dx. We then obtain, together with Lemma B.1, for θ ∈ Θ1 ×ΘR

2 ,

IR(θ) = (Eθ − E,P θ − P,R−1(Cθ − CR), R−1(J θ − J R)) + IR1 (θ)− (λ̃R−1(logR)
1
2 , 0)

where

|IR1 (θ)| ≤ C(R−1 + |θ|2R−2).

By Lemma 4.8 with IR0 (θ) = IR1 (θ)− (λ̃R−1(logR)
1
2 , 0), there is θ ∈ Θ1×ΘR

2 such that IR(θ) = 0

for R sufficiently large. Because the term λ̃R−1(logR)
1
2 dominates other error terms in the identity

IR(θ) = 0 with a favorable sign, we obtain E < Eθ and |P θ − P | < Eθ − E < ε for R large.

Last, we verify the dominant energy condition for (ḡR, π̄R) on A1. We have solved

ΦV R

(γR,τR)(ḡ
R, π̄R) = ΦV R

(γR,τR)(γ
R, τR) + (2ψR + λζR−2(logR)

1
2 , V R).

Because λ > 0, by Lemma 4.2, it suffices to show that on A1

ψ0 ≥ 2C2
1χ(1− χ)R−1.

Since ψ0 is positive in A1 and χ(1−χ) is supported on a compact subset of A1, the above inequality

holds for R sufficiently large.

�
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Another application is a version of the N -body initial data construction of [2]. Once the gluing

construction Theorem 4.9 is achieved, the proof of the N -body construction with the dominant

energy condition is essentially identical to [2] for the vacuum case, so we omit the proof.

Theorem 4.10. Let (Mk, g
k, πk), k = 1, . . . , N , be three-dimensional asymptotically flat initial

data sets that satisfy the dominant energy condition and have time-like ADM energy-momentum

vector (Ek, Pk). Let Uk ⊂ Mk be compact subsets. There is ε0 > 0 so that for 0 < ε < ε0,

there is an initial data set (M, g, π) with the dominant energy condition which contains a region

U isometric to
N⋃
k=1

(Uk, g
k), and the distances between distinct Uk are O(ε−1), and (M \ U, g, π)

has one asymptotically flat end identical to a Kerr initial data set, with ADM energy-momentum

(E,P ) satisfying

∣∣∣∣E − N∑
k=1

Ek

∣∣∣∣ < ε and

∣∣∣∣P − N∑
k=1

Pk

∣∣∣∣ < ε.

5. Deforming the modified constraint map

In this section, we prove Theorem 3.1. The argument is similar to that for the constraint map [7,

Section 4.2]. We first solve the linearized equation via a variational approach with estimates and

then use iteration for the nonlinear problem. We also pay special care to ensure uniform estimates.

Throughout the section, the weighted Sobolev and Hölder norms are all taken on Ω.

5.1. The linearized equation. The goal is to solve the following linearized system for given

(ψ, V )

DΦW
(g,π)|(g,π)(h,w) = (ψ, V ).

We recall that to simplify notation, we let DΦW
(g,π) = DΦW

(g,π)|(g,π), the linearization at (g, π).

Consider the functional G defined by

G(f,X) =

∫
Ω

(
1

2
ρg

∣∣∣(DΦW
(g,π))

∗(f,X)
∣∣∣2
g
− (ψ, V ) ·g (f,X)

)
dµg.

Clearly the functional is convex. To derive the key coercivity property, we need some basic esti-

mates. Recall L∗gf = −(∆gf)g + Hessgf − f Ric(g).

Lemma 5.1. Let g0 ∈ C2(Ω). There is a C2(Ω) neighborhood U0 of g0 and a constant C > 0 such

that for g ∈ U0 and for (f,X) ∈ H2
ρg(Ω)×H1

ρg(Ω),

‖f‖H2
ρg
≤ C

(
‖L∗gf‖L2

ρg
+ ‖f‖L2

ρg

)
(5.1)

‖X‖H1
ρg
≤ C

(
‖DgX‖L2

ρg
+ ‖X‖L2

ρg

)
.(5.2)

Proof. The uniform dependence of the constant C on the metric in (5.1) follows from the proof

of [5, Proposition 3.1-3.2, Theorem 3]; in particular, one uses [5, Equation (13)] and the co-area

formula as in the end of the proof of [5, Theorem 3], cf. [6, Proposition 3.1 and Remark 3.6].

For (5.2), it suffices to prove that there is a uniform constant C such that∫
Ω
|∇gX|2ρg dµg ≤ C

(∫
Ω
|DgX|2ρg dµg +

∫
Ω
|X|2ρg dµg

)
.
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The estimate for a fixed metric is obtained in [7, Proof of Lemma 4.1]. In their proof, an analysis of

the arguments in [7, pp. 201-202 and the first paragraph of p. 203] shows that there is a neighborhood

U0 so that for X ∈ H1
ρg(Ω)∫

Ω
|∇gX|2ρg dµg

≤ C0

(
N2

∫
Ω
|DgX|2ρg dµg +

∫
Ω
|X|2ρg dµg +

∫
Ω
|X|2d−4

g ρg dµg

)
,

(5.3)

where C0 is independent of g ∈ U0, and N . It is important that the coefficient of the last integral

above does not depend on N . (Note that we use the exponential weight function ρg, instead of the

polynomial weight function, so the power of the distance function in the last term is different from

[7, p. 203].) The last term in the right hand side was handled by an indirect argument in [7]. Here

we apply (2.14) (with j = k = 1) in the proof of Corollary 2.9 to the last term and derive∫
Ω
|X|2d−4

g ρgdµg ≤
4

N

(∫
Ω
|∇gX|2ρg dµg + C

∫
Ω
|X|2ρg dµg

)
.

The first term in the right hand side can be absorbed into the left hand side of (5.3) for our choice

of N in (2.11).

�

Lemma 5.2. Let (g0, π0) ∈ C2(Ω)× C1(Ω) be an initial data set, and let W0 ∈ C0(Ω) be a vector

field. There is a neighborhood U of (g0, π0) in C2(Ω)×C1(Ω), a neighborhood W of W0 in C0(Ω),

and a constant C > 0 such that for (g, π) ∈ U , W ∈ W, and for (f,X) ∈ H2
ρg(Ω) × H1

ρg(Ω), the

following estimate holds:

‖(f,X)‖H2
ρg
×H1

ρg
≤ C

(
‖(DΦW

(g,π))
∗(f,X)‖L2

ρg
+ ‖(f,X)‖L2

ρg

)
.(5.4)

Proof. The terms in (DΦW
(g,π))

∗(f,X) that have the highest order of derivatives are L∗gf and DgX.

Hence,

‖L∗gf‖L2
ρg
≤ C

(
‖(DΦW

(g,π))
∗(f,X)‖L2

ρg
+ ‖f‖L2

ρg
+ ‖X‖H1

ρg

)
‖DgX‖L2

ρg
≤ C

(
‖(DΦW

(g,π))
∗(f,X)‖L2

ρg
+ ‖(f,X)‖L2

ρg

)
.

The desired inequalities follow from Lemma 5.1. �

Theorem 5.3. Let (g0, π0) ∈ C2(Ω)×C1(Ω) be an initial data set, and let W0 ∈ C0(Ω) be a vector

field. Suppose that the kernel of (DΦW0

(g0,π0))
∗ is trivial on Ω. Then there is a neighborhood U of

(g0, π0) in C2(Ω)×C1(Ω), a neighborhood W of W0 in C0(Ω), and a constant C > 0 such that for

(g, π) ∈ U , W ∈ W, and (f,X) ∈ H2
ρg(Ω)×H1

ρg(Ω), the following estimate holds:

‖(f,X)‖H2
ρg
×H1

ρg
≤ C‖(DΦW

(g,π))
∗(f,X)‖L2

ρg
.(5.5)

Proof. The proof is a standard argument, but we include it for the reader’s convenience. Let U ,W
be from Lemma 5.2. By shrinking the neighborhoods if necessary, we may assume that (DΦW

(g,π))
∗

has a trivial kernel on Ω for (g, π) ∈ U , W ∈ W. Suppose there were sequences (gk, πk)→ (g, π) in

U , Wk →W in W, and (fk, Xk) ∈ H2
ρk
×H1

ρk
, for which

‖(fk, Xk)‖H2
ρk
×H1

ρk
= 1
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but with

‖(DΦWk

(gk,πk))
∗(fk, Xk)‖L2

ρk
→ 0,

where ρk = ρgk . By Proposition 2.10, the sequence (fk, Xk)ρ
1
2
k is bounded in H2(Ω) × H1(Ω).

By the Rellich theorem, upon choosing a suitable subsequence and relabeling, there is (f,X) ∈
H2

loc(Ω)×H1
loc(Ω) such that

‖(fk, Xk)ρ
1
2
k − (f,X)ρ

1
2
g ‖H1×L2 → 0.

(Since the H1(Ω)× L2(Ω) norms are equivalent for g in a neighborhood of g0, the above conver-

gence can be taken, for example, with respect to g.) Because ρk has a uniform positive lower

bound on any given compact subset of Ω, it implies that (fk, Xk) converges in L2
loc to (f,X) and

(DΦW
(g,π))

∗(f,X) = 0 weakly and hence (f,X) is in the kernel of (DΦW
(g,π))

∗. Thus, (f,X) = (0, 0)

because the kernel of (DΦW
(g,π))

∗ is trivial. Thus, (fk, Xk)ρ
1
2
k converges to zero in H1(Ω) × L2(Ω).

Lemma 5.2 implies ‖(fk, Xk)‖H2
ρk
×H1

ρk
→ 0 and contradicts our assumption. �

Remark 5.4. The above theorem is essentially the only place we need to assume that the kernel is

trivial. If the kernel were not trivial, the coercivity estimate would still hold transverse to the kernel.

More precisely, let S be a complete linear subspace of H2
ρg(Ω) × H1

ρg(Ω) such that S ∩ K = {0}
where K = ker (DΦW0

(g0,π0))
∗. Then the above argument implies that the coercivity estimate (5.5)

holds for (f,X) ∈ S. The only difference in the proof is that after showing that the sequence

(fk, Xk) converges to (f,X) ∈ ker (DΦW
(g,π))

∗ =: K ′, one uses that K ′ is also transverse to S for

sufficiently small neighborhoods U ,W to conclude (f,X) = (0, 0).

We now apply the coercivity estimate to obtain the variational solution of the linearized equation.

Theorem 5.5. Let (g0, π0) ∈ C4(Ω)×C3(Ω) be an initial data set, and let W0 ∈ C0(Ω) be a vector

field. Suppose that the kernel of (DΦW0

(g0,π0))
∗ is trivial on Ω. Let the neighborhoods U , W and the

constant C be as in Theorem 5.3. Then for (g, π) ∈ U , W ∈ W, and (ψ, V ) ∈ L2
ρ−1
g

(Ω)× L2
ρ−1
g

(Ω),

the functional G(f,X) has a global minimizer (f,X) ∈ H2
ρg(Ω) ×H1

ρg(Ω). Furthermore, (f,X) is

the unique weak solution of the linear system

(5.6) DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X) = (ψ, V )

and satisfies the estimate

‖(f,X)‖H2
ρg
×H1

ρg
≤ 2C‖(ψ, V )‖L2

ρ−1
g
×L2

ρ−1
g

.(5.7)

Proof. Theorem 5.3 implies that the infimum of the functional G is bounded from below because

G(f,X) ≥ 1

2C
‖(f,X)‖2H2

ρg
×H1

ρg
− ‖(ψ, V )‖L2

ρ−1
g
×L2

ρ−1
g

‖(f,X)‖L2
ρg
×L2

ρg
.

By standard variational theory, e.g. as in [5, p. 150-152], the functional has a global minimizer

(f,X) ∈ H2
ρg(Ω)×H1

ρg(Ω). Deriving the Euler-Lagrange equation for the functional G yields (5.6).

The estimate (5.7) follows because G(f,X) ≤ 0.

�
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5.2. Weighted Schauder estimates. This section is devoted to derive the following weighted

interior Schauder estimates for the linearized equation.

Theorem 5.6. Let (g0, π0) ∈ C4,α(Ω)× C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω) be a

vector field. Suppose that the kernel of (DΦW0

(g0,π0))
∗ is trivial on Ω. There exists a neighborhood U

of (g0, π0) in C4,α(Ω)× C3,α(Ω), a neighborhood W of W0 in C2,α(Ω), and a constant C > 0 such

that for (g, π) ∈ U , W ∈ W, and for (ψ, V ) ∈ B0 × B1, if (f,X) ∈ H2
ρg(Ω)×H1

ρg(Ω) weakly solves

the linear system

DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X) = (ψ, V ),

then (f,X) ∈ B4 × B3 and

‖(f,X)‖B4×B3 ≤ C‖(ψ, V )‖B0×B1 .(5.8)

Furthermore, if we set (h,w) = ρg(DΦW
(g,π))

∗(f,X), then

‖(h,w)‖B2×B2 ≤ C‖(ψ, V )‖B0×B1 .(5.9)

We set up the framework of Douglis-Nirenberg [10] for the interior Schauder estimate for an

elliptic system. Denote the linear system

L(f,X) : = ρ−1
g DΦW

(g,π)ρg(DΦW
(g,π))

∗(f,X).(5.10)

Note the leading order terms of this operator are the same as the operator with the usual constraint

map. Hence L is strictly elliptic as a system of mixed order in the sense of Douglis-Nirenberg [10],

cf. [3, pp. 4-5], [7, p. 207]. In local coordinates, we write X = (X1, . . . , Xn) and set U to be the

vector-valued function

U = (U1, U2, . . . , Un+1) = (f,X1, . . . , Xn).

Denote the jth component of LU by (LU)j for j = 1, . . . , n+ 1, which we express locally as

(LU)j =
n+1∑
k=1

4∑
|β|=0

bβjk∂
βUk =:

n+1∑
k=1

LjkU
k,

where Ljk is the differential operator Ljk =
∑

β b
β
jk∂

β. Using the notation as in [10], we solve for

integers s1, . . . , sn+1 and t1, . . . , tn+1 such that sj + tk is the order of the differential operator Ljk

and such that s1 = 0. This gives

s1 = 0, t1 = 4, sj = −1, tk = 3 (j, k = 2, . . . , n+ 1).

By direct computation, the function bβjk is a degree one polynomial of ρ−1∇`ρ, 0 ≤ ` ≤ sj + tk−|β|
with coefficients depending locally uniformly in (g, π) ∈ C4,α(Ω)× C3,α(Ω) and W ∈ C2,α(Ω). By

Proposition 2.11, we have the following estimate.

Lemma 5.7. The coefficients bβjk satisfy

‖bβjk‖C−sj ,α
φ,φ

sj+tk−|β|
(Ω)
≤ C,

where the constant C depends locally uniformly on (g, π) ∈ C4,α(Ω)× C3,α(Ω) and W ∈ C2,α(Ω).
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We have the following interior Schauder estimate. The proof follows from a scaling argument

as in [3, Appendix B] and is included in Appendix C, where we spell out the dependence of the

constant C.

Theorem 5.8. Let L be a linear differential operator on U = (U1, . . . , Un+1) such that the j-th

component of the operator L is defined by

(LU)j =
n+1∑
k=1

LjkU
k, (j = 1, . . . , n+ 1)

where Ljk =
∑sj+tk
|β|=0 b

β
jk∂

β is a differential operator of order sj + tk with

s1 = 0, t1 = 4

sj = −1, tk = 3, (j, k = 2, . . . , n+ 1).

Let ϕj = φr+4−tjρs for r, s ∈ R. Then

n+1∑
j=1

‖U j‖
C
tj ,α

φ,ϕj
(Ω)
≤ C

n+1∑
j=1

‖(LU)j‖
C
−sj ,α

φ,φ
tj+sj ϕj

(Ω)
+

n+1∑
j=1

‖U j‖L2
φ−nϕ2

j

(Ω)

(5.11)

where C depends only on n, α, sup
j,k=1,...,n+1

|β|≤sj+tk

‖bβjk‖C−sj ,α
φ,φ

sj+tk−|β|
(Ω)

, and the lower bound of ellipticity of

the operator L.

Remark 5.9. We also note that higher order estimates take the form

n+1∑
j=1

‖U j‖
C
`+tj ,α

φ,ϕj
(Ω)
≤ C

n+1∑
j=1

‖(LU)j‖
C
`−sj ,α

φ,φ
tj+sj ϕj

(Ω)
+
n+1∑
j=1

‖U j‖L2
φ−nϕ2

j

(Ω)

 ,

where C depends only on n, α, sup
j,k=1,...,n+1

|β|≤sj+tk

‖bβjk‖C`−sj ,α
φ,φ

sj+tk−|β|
(Ω)

, and the lower bound of ellipticity of

the operator L.

Proof of Theorem 5.6. Applying Theorem 5.8 (with r = n
2 , s = 1

2) to the operator

L(f,X) = ρ−1
g DΦW

(g,π)ρg(DΦW
(g,π))

∗(f,X),

we have

‖f‖
C4,α

φ,φ
n
2 ρ

1
2
g

+ ‖X‖
C3,α

φ,φ
1+n

2 ρ
1
2
g

=

n+1∑
i=1

‖U i‖
C
ti,α

φ,ϕi

≤ C

[
n+1∑
i=1

‖(LU)i‖C−si,α
φ,φti+siϕi

+

n+1∑
i=1

‖U i‖L2
φ−nϕ2

i

]

= C

‖ρ−1
g ψ‖

C0,α

φ,φ
4+n

2 ρ
1
2
g

+ ‖ρ−1
g V ‖

C1,α

φ,φ
3+n

2 ρ
1
2
g

+ ‖f‖L2
ρg

+ ‖X‖L2
φ2ρg


≤ C

‖ψ‖
C0,α

φ,φ
4+n

2 ρ
− 1

2
g

+ ‖V ‖
C1,α

φ,φ
3+n

2 ρ
− 1

2
g

+ ‖f‖L2
ρg

+ ‖X‖L2
φ2ρg

 .
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The above Hölder estimate, together with the Sobolev estimate (5.7), implies (5.8).

The estimate (5.9) for (h,w) follows because differentiation is a continuous operator from Ck,αφ,ϕ
to Ck−1,α

φ,φϕ and from Hk
ρ−1
g

to Hk−1

ρ−1
g

. �

5.3. Solving the nonlinear problem by iteration. We complete the proof of Theorem 3.1,

which can be formulated more explicitly as follows.

Theorem 5.10. Let (g0, π0) ∈ C4,α(Ω) × C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω) be

a vector field. Suppose that the kernel of (DΦW0

(g0,π0))
∗ is trivial in Ω. Let C be the constant from

Theorem 5.6. There is a neighborhood U of (g0, π0) in C4,α(Ω) × C3,α(Ω), and a neighborhood W
of W0 in C2,α(Ω), and ε > 0 such that for (g, π) ∈ U , W ∈ W and for (ψ, V ) ∈ B0 × B1 with

‖(ψ, V )‖B0×B1 ≤ ε, there exists (f,X) ∈ B4 × B3 such that

(h,w) = ρg(DΦW
(g,π))

∗(f,X)

satisfies (h,w) ∈ B2 × B2 and

ΦW
(g,π)(g + h, π + w) = ΦW

(g,π)(g, π) + (ψ, V )

with ‖(h,w)‖B2×B2 ≤ C‖(ψ, V )‖B0×B1.

Proof. By Theorem 5.5, there exists (f0, X0) ∈ B4 × B3 such that (h0, w0) = ρg(DΦW
(g,π))

∗(f0, X0)

solves DΦW
(g,π)(h0, w0) = (ψ, V ) and, by Theorem 5.6, the following estimates hold

‖(h0, w0)‖B2×B2 ≤ C‖(ψ, V )‖B0×B1 , ‖(f0, X0)‖B4×B3 ≤ C‖(ψ, V )‖B0×B1 .

By Lemma A.3 we obtain that

‖ΦW
(g,π)(g, π) + (ψ, V )− ΦW

(g,π)(g + h0, π + w0)‖B0×B1

= ‖QW(g,π)(h0, w0)‖B0×B1 ≤ D‖(h0, w0)‖2B2×B2
≤ DC2‖(ψ, V )‖2B0×B1

.

Write (γ1, τ1) = (g, π) + (h0, w0). Note that γ1 is a Riemannian metric provided ‖(h0, w0)‖B0×B1 is

sufficiently small. Fix δ ∈ (0, 1). We set ε sufficiently small so that DC2ε1−δ ≤ 1.

We then proceed recursively as in the following lemma, whose proof is included in Appendix D.

Lemma 5.11. Fix (g0, π0) and δ ∈ (0, 1). There exists a neighborhood U of (g0, π0) in C4,α(Ω)×
C3,α(Ω), a neighborhood W of W0 in C2,α(Ω), and ε ∈ (0, 1

2) depending only on δ and Ω, such that

for (g, π) ∈ U and for W ∈ W the following holds. Suppose that m ≥ 1 and we have constructed

(f0, X0), . . . , (fm−1, Xm−1) ∈ B4(Ω) × B3(Ω), (h0, w0), . . . , (hm−1, wm−1) ∈ B2(Ω) × B2(Ω) where

(hp, wp) = ρg(DΦW
(g,π))

∗(fp, Xp) and (γ1, τ1), . . . , (γm, τm) ∈ C2,α(Ω) × C1,α(Ω) where γj = g +∑j−1
p=0 hp and τj = π +

∑j−1
p=0wp. Assume that ‖(ψ, V )‖B0×B1 ≤ ε and that for all 0 ≤ p ≤ m− 1,

‖(fp, Xp)‖B4×B3 ≤ C‖(ψ, V )‖1+pδ
B0×B1

and ‖(hp, wp)‖B2×B2 ≤ C‖(ψ, V )‖1+pδ
B0×B1

,(5.12)

and that for all 1 ≤ j ≤ m,

‖ΦW
(g,π)(g, π) + (ψ, V )− ΦW

(g,π)(γj , τj)‖B0×B1 ≤ ‖(ψ, V )‖1+jδ
B0×B1

.(5.13)

If we define (hm, wm) = ρgD(ΦW
(g,π))

∗(fm, Xm) where (fm, Xm) is the variational solution to

DΦW
(g,π)ρg(DΦW

(g,π))
∗(fm, Xm) = ΦW

(g,π)(g, π) + (ψ, V )− ΦW
(g,π)(γm, τm),
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and if we set (γm+1, τm+1) = (γm, τm) + (hm, wm), then the estimates (5.12) and (5.13) hold for

p = m and j = m+ 1.

We obtain the series
∑∞

p=0(fp, Xp) converging in B4(Ω) × B3(Ω) to some (f,X). Let (h,w) =

ρg(DΦW
(g,π))

∗(f,X), then (g + h, π + w) satisfies the nonlinear system ΦW
(g,π)(g + h, π + w) =

ΦW
(g,π)(g, π) + (ψ, V ). �

6. Proof of Theorem 4.3 and higher regularity

The proof of Theorem 4.3 is along the same line as the proof of Theorem 3.1 and Theorem 5.10 in

Section 5. Recall that U0 is a bounded neighborhood of a Riemannian metric g0, as in Section 2.4,

and the compact set Ω0 ⊂ Ω is chosen so that ρg ≡ 1 on Ω0 for all g ∈ U0. Fix a smooth bump

function ζ supported in Ω0. Denote by Sg the L2(dµg)-orthogonal complement of ζK, where K is

the kernel of (DΦW0

(g0,π0))
∗. Let Πg : B0×B1 → (B0×B1)∩Sg be the L2(dµg)-orthogonal projection.

We begin with a basic lemma on the projection map. Throughout this section, the function

spaces are all taken on Ω, unless otherwise indicated.

Lemma 6.1. There is a constant C > 0 such that for g ∈ U0,

‖Πg(ψ, V )‖L2

ρ−1
g

≤ ‖(ψ, V )‖L2

ρ−1
g

‖(ψ, V )⊥‖L2

ρ−1
g

≤ ‖(ψ, V )‖L2

ρ−1
g

‖Πg(ψ, V )‖B0×B1 ≤ C‖(ψ, V )‖B0×B1 ,

where (ψ, V )⊥ = (ψ, V )−Πg(ψ, V ) ∈ ζK.

Proof. Because ζ is supported in Ω0 where ρg ≡ 1, the following weighted orthogonality holds:

〈Πg(ψ, V ), (ψ, V )⊥〉L2

ρ−1
g

(Ω) = 〈Πg(ψ, V ), (ψ, V )⊥〉L2(Ω0) = 0.

The first two inequalities follow by

‖(ψ, V )‖2L2

ρ−1
g

= ‖Πg(ψ, V )‖2L2

ρ−1
g

+ ‖(ψ, V )⊥‖2L2

ρ−1
g

.

To establish the last inequality, we recall that all norms of the finite-dimensional space ζK are

equivalent and the B0 × B1-norms on ζK are all uniformly equivalent to each other for g ∈ U0:

‖Πg(ψ, V )‖B0×B1 ≤ ‖(ψ, V )‖B0×B1 + ‖(ψ, V )⊥‖B0×B1

≤ ‖(ψ, V )‖B0×B1 + C‖(ψ, V )⊥‖L2

= ‖(ψ, V )‖B0×B1 + C‖(ψ, V )⊥‖L2

ρ−1
g

≤ (1 + C)‖(ψ, V )‖B0×B1 .

In the third line we use that ζ is supported where ρg ≡ 1.

�
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6.1. The linearized equation. In this section, we solve the linearized equation for the operator

Πg0 ◦ ΦW
(g,π). We again denote by DΦW

(g,π) = DΦW
(g,π)|(g,π) the linearization at (g, π).

Theorem 6.2. Let (g0, π0) ∈ C4,α(Ω)× C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω) be a

vector field. There is a neighborhood U of (g0, π0) in C4,α(Ω)× C3,α(Ω), a neighborhood W of W0

in C2,α(Ω), and a constant C > 0, such that for (g, π) ∈ U ,W ∈ W and for (ψ, V ) ∈ L2
ρ−1
g

, there is

a unique (f,X) ∈ (H2
ρg ×H

1
ρg) ∩ Sg that weakly solves

Πg0 ◦DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X) = Πg0(ψ, V ),(6.1)

or, equivalently,

DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X)− (ψ, V ) ∈ ζK.

Moreover, (f,X) satisfies the estimate

‖(f,X)‖H2
ρg
×H1

ρg
≤ C‖(ψ, V )‖L2

ρ−1
g
×L2

ρ−1
g

.(6.2)

The proof of the theorem is a modification of the variational argument in Theorem 5.5. Note that

the projection map is taken with respect to a fixed metric g0, but the functional G below naturally

involves g. To resolve this, we solve the linearized equation whose projection is with respect to g

and look for solutions (f,X) ∈ Sg. Theorem 6.2 follows from the proposition below.

Proposition 6.3. Let (g0, π0) ∈ C4,α(Ω) × C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω)

be a vector field. There is a neighborhood U of (g0, π0) in C4,α(Ω)×C3,α(Ω), a neighborhood W of

W0 in C2,α(Ω), and a constant C > 0 such that for (g, π) ∈ U , W ∈ W, and for (ψ, V ) ∈ L2
ρ−1
g

(Ω),

there is a unique (f,X) ∈ (H2
ρg(Ω)×H1

ρg(Ω)) ∩ Sg that weakly solves

Πg ◦DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X) = Πg(ψ, V ),(6.3)

or equivalently,

DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X)− (ψ, V ) ∈ ζK.

Moreover, (f,X) satisfies the estimate

‖(f,X)‖H2
ρg
×H1

ρg
≤ C‖(ψ, V )‖L2

ρ−1
g
×L2

ρ−1
g

.(6.4)

Proof. For given (ψ, V ) ∈ L2
ρ−1
g

(Ω), let G be a similar functional as in Theorem 5.5, whose domain

is restricted to the linear subspace (H2
ρg(Ω)×H1

ρg(Ω)) ∩ Sg: for (f,X) ∈ (H2
ρg(Ω)×H1

ρg(Ω)) ∩ Sg,
let

G(f,X) =

∫
Ω

[
1

2
ρg

∣∣∣(DΦW
(g,π))

∗(f,X)
∣∣∣2
g
−Πg(ψ, V ) ·g (f,X)

]
dµg.

By the coercivity estimate (see Remark 5.4),

G(f,X) ≥ 1

2C
‖(f,X)‖2H2

ρg
×H1

ρg
− ‖Πg(ψ, V )‖L2

ρ−1
g

‖(f,X)‖L2
ρg

It is clear that functional is still convex when restricted on the linear subspace, so there is a unique

minimizer (f,X) ∈ (H2
ρg(Ω) ×H1

ρg(Ω)) ∩ Sg. Furthermore, since G(f,X) ≤ 0 and by Lemma 6.1,

the estimate (6.4) holds.
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To see that (f,X) solves (6.3) weakly, we need to show that, for all smooth compactly supported

test fields (u, Y ),

∫
Ω

(
Πg ◦DΦW

(g,π) ◦ ρg(DΦ(g,π))
∗(f,X)−Πg(ψ, V )

)
·g (u, Y ) dµg = 0.(6.5)

The equality trivially holds for (u, Y ) ∈ ζK. For (u, Y ) ∈ Sg, because (f,X) is a minimizer in

(H2
ρg(Ω)×H1

ρg(Ω)) ∩ Sg, we see that

0 =
d

dt

∣∣∣∣
t=0

G ((f,X) + t(u, Y ))

=

∫
Ω
ρg(DΦW

(g,π))
∗(f,X) ·g (DΦW

(g,π))
∗(u, Y )−Πg(ψ, V ) ·g (u, Y ) dµg

=

∫
Ω

(
DΦW

(g,π) ◦ ρg(DΦW
(g,π))

∗(f,X)−Πg(ψ, V )
)
·g (u, Y ) dµg ,

which implies (6.5). �

6.2. Weighted Schauder estimates.

Proposition 6.4. Let (g0, π0) ∈ C4,α(Ω) × C3,α(Ω) be an initial data set, and let W0 ∈ C2,α(Ω)

be a vector field. There is a neighborhood U of (g0, π0) in C4,α(Ω)×C3,α(Ω), a neighborhood W of

W0 in C2,α(Ω), and a constant C > 0 such that for (g, π) ∈ U , W ∈ W, and for (ψ, V ) ∈ B0 × B1,

if (f,X) ∈ (H2
ρg(Ω)×H1

ρg(Ω)) ∩ Sg weakly solves the linear system

Πg0 ◦DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(f,X) = Πg0(ψ, V ),

then (f,X) ∈ B4 × B3 and

‖(f,X)‖B4×B3 ≤ C‖Πg0(ψ, V )‖B0×B1 .

Proof. Define

L(f,X) = ρ−1
g DΦW

(g,π) ◦ ρg(DΦW
(g,π))

∗(f,X)

U = (f,X1, . . . , Xn) (with respect to a fixed coordinate chart)

as in the proof of Theorem 5.6. Below we denote ρg by ρ. We write

LU = ρ−1Πg0(ρLU) + ρ−1(ρLU)⊥ = ρ−1Πg0(ψ, V ) + (LU)⊥ ,
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where we used the fact that ρg0 ≡ 1 on the support of ζ. Applying Theorem 5.8 as in the proof of

Theorem 5.6, we have

‖f‖
C4,α

φ,φ
n
2 ρ

1
2

+ ‖X‖
C3,α

φ,φ
1+n

2 ρ
1
2

=
n+1∑
j=1

‖U j‖
C
tj ,α

φ,ϕj

≤ C

n+1∑
j=1

‖(LU)j‖
C
−sj ,α

φ,φ
tj+sj ϕj

+

n+1∑
j=1

‖U j‖L2
φ−nϕ2

j


≤ C

n+1∑
j=1

‖(ρ−1Πg0(ψ, V ))j‖
C
−sj ,α

φ,φ
tj+sj ϕj

+

n+1∑
j=1

‖(LU)⊥j ‖C−sj ,α
φ,φ

tj+sj ϕj

+

n+1∑
j=1

‖U j‖L2
φ−nϕ2

j


≤ C

n+1∑
j=1

‖(Πg0(ψ, V ))j‖
C
−sj ,α

φ,φ
tj+sj ϕjρ

−1

+
n+1∑
j=1

‖(LU)⊥j ‖C−sj ,α
φ,φ

tj+sj ϕj

+
n+1∑
j=1

‖U j‖L2
φ−nϕ2

j

 .

We now estimate the (LU)⊥-term. Just as in the proof of Lemma 6.1, using the fact that all norms

of a finite-dimensional space are equivalent, and that the support of (LU)⊥j is contained in Ω0, we

obtain the following estimate, uniformly across U and W:

‖(LU)⊥j ‖C−sj ,α
φ,φ

tj+sj ϕj

(Ω)
≤ C‖(LU)⊥‖L2(Ω) = C‖(LU)⊥‖L2(Ω0) ≤ C‖LU‖L2(Ω0).

To estimate ‖LU‖L2(Ω0), we note that L is a differential operator that contains four derivatives on f

and three derivatives on X and that Ω0 is compact. Then by enlarging the constant C if necessary

and by interpolation, we have

‖(LU)⊥j ‖C−sj ,α
φ,φ

tj+sj ϕj

(Ω)
≤ C‖(f,X)‖C4(Ω0)×C3(Ω0)

≤ ε‖(f,X)‖C4,α(Ω0)×C3,α(Ω0) + C(ε)‖(f,X)‖L2(Ω0)×L2(Ω0).

≤ C

[
ε

(
‖f‖

C4,α

φ,φ
n
2 ρ

1
2

+ ‖X‖
C3,α

φ,φ
1+n

2 ρ
1
2

)
+ C(ε)

(
‖f‖L2

ρ
+ ‖X‖L2

φ2ρ

)]
,

where in the last inequality, we replace the norms on Ω0 by the corresponding weighted norms on Ω,

up to the multiple of a constant that is uniform in (g, π) ∈ U and W ∈ W. Choosing ε sufficiently

small and absorbing the weighted Hölder norm on (f,X) gives the desired Hölder estimates. The

weighted Sobolev estimates on (f,X) follow by Proposition 6.3, and the fact that the solution to

the linear system is unique.

�

6.3. Solving the nonlinear projected problem by iteration. We discuss the proof of The-

orem 4.3 to solve for the nonlinear problem: for (ψ, V ) ∈ B0 × B1 sufficiently small, there is

(f,X) ∈ (B4 × B3) ∩ Sg such that (h,w) = ρg(DΦW
(g,π))

∗(f,X) solves

Πg0 ◦ ΦW
(g,π)(g + h, π + w) = Πg0 ◦ ΦW

(g,π)(g, π) + Πg0(ψ, V )

with ‖(h,w)‖B2×B2 ≤ C‖Πg0(ψ, V )‖B0×B1 .
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The proof follows the same iteration scheme as in the proof of Theorem 5.10 by replacing ΦW
(g,π)

with Πg0 ◦ΦW
(g,π) and (ψ, V ) with Πg0(ψ, V ). The initial step of the iteration is solving the following

for (f0, X0) ∈ Sg
Πg0 ◦DΦW

(g,π) ◦ ρg(DΦW
(g,π))

∗(f0, X0) = Πg0(ψ, V ) ,

and then setting (h0, w0) = ρg(DΦW
(g,π))

∗(f0, X0) and (γ1, τ1) = (g + h0, π + w0). We then solve

inductively for m ≥ 0

Πg0 ◦DΦW
(g,π) ◦ ρg(DΦW

(g,π))
∗(fm, Xm) = Πg0 ◦ ΦW

(g,π)(g, π) + Πg0(ψ, V )−Πg0 ◦ ΦW
(g,π)(γm, τm)

and set (hm, wm) = ρg(DΦW
(g,π))

∗(fm, Xm) and (γm+1, τm+1) = (g +
∑m

p=0 hp, π +
∑m

p=0wp). The

essential estimates to guarantee the iteration procedure converges are the following:

‖(fm, Xm)‖B4×B3 ≤ C‖Πg0 ◦ ΦW
(g,π)(g, π) + Πg0(ψ, V )−Πg0 ◦ ΦW

(g,π)(γm, τm)‖B0×B1

‖(hm, wm)‖B2×B2 ≤ C‖(fm, Xm)‖B4×B3

and

‖Πg0 ◦DΦW
(g,π)|(γ,τ)(h,w)−Πg0 ◦DΦW

(g,π)|(γ′,τ ′)(h,w)‖B0×B1 ≤ D‖(h,w)‖B2×B2‖(γ − γ′, τ − τ ′)‖B2×B2

‖Πg0 ◦QW(g,π)(h0, w0)‖B0×B1 ≤ D‖(h0, w0)‖2B2×B2
.

The first two estimates follow by Proposition 6.4 and the fact that the differential operator is

continuous between the corresponding weighted spaces. The last two estimates follow by Lemma 6.1

and the estimates for unprojected operators from Lemma A.3.

6.4. Higher order regularity and continuous dependence. The previous analysis, in partic-

ular Remark 5.9, implies the following version of the local surjectivity theorem with higher order

regularity; continuous dependence also follows directly from the above analysis, cf. [6, Proposition

3.7]. For simplicity we state the theorem for (ψ, V ) of compact support, but one can more gener-

ally pose that (ψ, V ) lies in suitable weighted spaces (an infinite intersection of such spaces for the

C∞-case, for example).

Theorem 6.5. Let k ≥ 0. Let (g0, π0) ∈ Ck+4,α(Ω) × Ck+3,α(Ω) be an initial data set, and

let W0 ∈ Ck+2,α(Ω). Suppose that the kernel of (DΦW0

(g0,π0))
∗ is K (may be trivial). Then there

is a Ck+4,α(Ω) × Ck+3,α(Ω) neighborhood U of (g0, π0), a neighborhood W of W0 in Ck+2,α(Ω),

and constants ε > 0, C > 0 such that for (g, π) ∈ U and for (ψ, V ) ∈ Ck,αc (Ω) × Ck+1,α
c (Ω)

with ‖(ψ, V )‖B0×B1 ≤ ε, there is a pair of symmetric tensors (h,w) ∈ Ck+2,α
c (Ω) × Ck+2,α

c (Ω)

with ‖(h,w)‖Ck+2,α×Ck+2,α ≤ C‖(ψ, V )‖Ck,α×Ck+1,α such that the initial data set (g + h, π + w) ∈
Ck+2,α(Ω)× Ck+2,α(Ω) satisfies

Πg0 ◦ ΦW
(g,π)(g + h, π + w) = Πg0ΦW

(g,π)(g, π) + Πg0(ψ, V ),

where the weighted norms are taken with respect to g. The solution (h,w) ∈ B2 × B2 depends

continuously on (ψ, V ) ∈ B0 × B1. If, in addition, (g, π) ∈ C∞(Ω) and (ψ, V ) ∈ C∞c (Ω), then

(h,w) ∈ C∞c (Ω).
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Proof. In the proof of Theorem 4.3 for k = 0, we have obtained (f,X) ∈ (B4 × B3) ∩ Sg such that

(h,w) = ρg(DΦW
(g,π))

∗(f,X)

solves the nonlinear equation. That is, (f,X) satisfies the quasi-linear elliptic system

ΦW
(g,π)

(
(g, π) + ρg(DΦW

(g,π))
∗(f,X)

)
− ΦW

(g,π)(g, π)− (ψ, V ) ∈ ζK.

Because elements in ζK are smooth with compact support, using the initial regularity (f,X) ∈
B4×B3, along with bootstrapping, one can get the higher-order estimates and boundary decay, cf.

[6, Sec. 3.7]; this method produces the C∞-regularity statement as well. �

Alternatively, one could pose the smallness condition on the norm ‖(ψ, V )‖Ck,α×Ck+1,α and prove

convergence of the iteration scheme in Ck+2,α × Ck+2,α to the limit (h,w), applying the estimates

in Remark 5.9 to the linearized operator. This argument proves the finite regularity statement.

This completes the proof of Theorem 1.2, and this also gives us what is required in the proof of

Theorem 1.3 and Theorem 1.4.

Appendix A. Estimates on the Taylor expansions

Consider the Taylor expansion of the constraint map Φ at an initial data set (g, π)

Φ(g + h, π + w) = Φ(g, π) +DΦ|(g,π)(h,w) +Q(g,π)(h,w).(A.1)

In local coordinates, the first slot ofDΦ|(g,π)(h,w) is a homogeneous linear polynomial in ∂2
ijhkl, ∂ihkl, hkl

and ∂iw
kl, wkl whose coefficients are smooth functions of ∂2

ijgkl, ∂igkl, gkl, ∂iπ
kl, πkl, and the second

slot of DΦ|(g,π)(h,w) is of the same type but contains no second derivatives of gkl, hkl. The remain-

der term Q(g,π)(h,w) is a homogeneous quadratic polynomial in ∂2
ijhkl, ∂ihkl, hkl, ∂iw

kl, wkl whose

coefficients are smooth functions of ∂2
ijgkl, ∂igkl, gkl, ∂iπ

kl, πkl and ∂2
ijhkl, ∂ihkl, hkl, ∂iw

kl, wkl, and

note that the second slot of Q(g,π)(h,w) contains no second derivatives in gkl and hkl.

It is clear that if (g, π) ∈ Ck+1,α(Ω)× Ck+1,α(Ω) for k ≥ 1, we have

‖DΦ|(g,π)(h,w)‖Ck−1,α(Ω)×Ck,α(Ω) ≤ C‖(h,w)‖Ck+1,α(Ω)×Ck+1,α(Ω)

‖Q(g,π)(h,w)‖Ck−1,α(Ω)×Ck,α(Ω) ≤ C‖(h,w)‖2
Ck+1,α(Ω)×Ck+1,α(Ω)

(A.2)

where C depends locally uniformly on (g, π), (h,w) ∈ Ck+2,α × C`+1,α. By direct analysis (with a

bit more care), we have the following estimates involving the weights.

Lemma A.1. Suppose that f is a C2,α(Ω) function such that ∇f is supported on a compact subset

of Ω. Then

‖DΦ|(g,π)(fh, fw)− fDΦ|(g,π)(h,w)‖B0×B1 ≤ C‖∇f‖B1‖(h,w)‖C2,α×C2,α

‖DΦ|(g+h,π+w)(h,w)−DΦ|(g,π)(h,w)‖C0,α×C1,α ≤ C‖(h,w)‖2C2,α×C2,α

‖Q(g,π)(fh, fw)− f2Q̃(g,π)(h,w)‖B0×B1 ≤ C‖∇f‖B1‖(h,w)‖2C2,α×C2,α

for some

‖Q̃(g,π)(h,w)‖C0,α×C1,α ≤ C‖(h,w)‖2C2,α×C2,α ,

where C depends locally uniformly on (g, π), (h,w) ∈ C2,α×C2,α and f ∈ C2,α. Note all the norms

are taken on Ω.
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We apply those estimates to interpolation between initial data sets.

Lemma A.2. Let 0 ≤ χ ≤ 1 be a Ck+2,α(Ω) bump function such that χ(1 − χ) is supported on a

compact subset of Ω. Denote by (g, π) = χ(g1, π1) + (1− χ)(g2, π2). Then

(1) The following Hölder estimate holds:

‖Φ(g, π)− χΦ(g1, π1)− (1− χ)Φ(g2, π2)‖Ck−1,α(Ω)×Ck,α(Ω)

≤ C‖(g1 − g2, π1 − π2)‖Ck+1,α(Ω)×Ck+1,α(Ω),

where C depends locally uniformly on (g1, π1), (g2, π2) ∈ Ck+2,α(Ω) × Ck+1,α(Ω) and χ ∈
Ck+2,α(Ω).

(2) The following weighted estimate holds:

‖Φ(g, π)− χΦ(g1, π1)− (1− χ)Φ(g2, π2)‖B0×B1

≤ C(‖χ(1− χ)‖B0 + ‖∇χ‖B1)‖(g1 − g2, π1 − π2)‖C2,α×C2,α ,

where C depends locally uniformly on (g1, π1), (g2, π2) ∈ C2,α × C2,α and χ ∈ C2,α.

Note that all the norms are taken on Ω with respect to a fixed metric, say g1.

Proof. Writing Φ(g, π) = χΦ(g, π) + (1− χ)Φ(g, π), we apply Taylor expansion to the first term at

(g1, π1) and the second term at (g2, π2) and derive

Φ(g, π)− (χΦ(g1, π1) + (1− χ)Φ(g2, π2))

= χDΦ|(g1,π1)((1− χ)(g2 − g1, π2 − π1)) + χQ(g1,π1)((1− χ)(g2 − g1, π2 − π1))

+ (1− χ)DΦ|(g2,π2)(χ(g1 − g2, π1 − π2)) + (1− χ)Q(g2,π2)(χ(g1 − g2, π1 − π2)).

The estimate (1) follows by (A.2).

The weighted estimate (2) follows by Lemma A.1. For example, in analyzing the preceding

equation, the following term appears

χ(1− χ)
(
DΦ|(g2,π2)(g1 − g2, π1 − π2)−DΦ|(g1,π1)(g1 − g2, π1 − π2)

)
and satisfies the desired estimate. �

We also need to estimate the Taylor expansion of the modified constraint map for the iteration

scheme. For a fixed vector field W ∈ Ck,α(Ω), the Taylor expansion of the modified map ΦW
(g,π) at

(γ, τ) is

ΦW
(g,π)(γ + h, τ + w) = ΦW

(g,π)(γ, τ) +DΦW
(g,π)|(γ,τ)(h,w) +QW(g,π),(γ,τ)(h,w).

In local coordinates, the linearized equation and the quadratic error term have a similar type

of expressions as those for the usual constraint map. By direct analysis, we have the following

estimates.

Lemma A.3. There is a constant D depending locally uniformly on (g, π), (γ, τ), (γ′, τ ′), (h,w) ∈
C2,α(Ω)× C2,α(Ω) and W ∈ C1,α(Ω) such that

‖DΦW
(g,π)|(γ,τ)(h,w)−DΦW

(g,π)|(γ′,τ ′)(h,w)‖B0×B1 ≤ D‖(h,w)‖B2×B2‖(γ − γ′, τ − τ ′)‖B2×B2

‖QW(g,π),(γ,τ)(h,w)‖B0×B1 ≤ D‖(h,w)‖2B2×B2
.
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Appendix B. Asymptotically flat initial data sets

Let B be a closed ball in R3. For every k ∈ {0, 1, . . .}, α ∈ (0, 1), and q ∈ R we define the norm

Ck,α−q (R3 \B) for f ∈ Ck,αloc (R3 \B) as

‖f‖
Ck,α−q (R3\B)

=
∑
|I|≤k

sup
x∈R3\B

∣∣∣|x||I|+q(∂If)(x)
∣∣∣+

∑
|I|=k

[
|x|k+q+α(∂If)(x)

]
α,R3\B

.

Let M be a smooth manifold such that there is a compact set K ⊂ M and a diffeomorphism

M \K ∼= R3 \B. The Ck,α−q norm on M is defined by taking the maximum of the Ck,α−q (R3 \B) norm

and the Ck,α norm on the compact set K. The weighted Hölder space Ck,α−q (M) is the collection of

those f ∈ Ck,αloc (M) with finite Ck,α−q (M) norm.

Let q > 1
2 , q0 > 0. We say that an initial data set (M, g, π) is asymptotically flat at the rate

(q, q0) if there is a compact set K ⊂ M and a diffeomorphism M \K ∼= R3 \ B for a closed ball

B ⊂ R3 such that

(g − δE, π) ∈ C2,α
−q (M)× C1,α

−q−1(M),

where δE is a smooth symmetric (0, 2) tensor that coincides with the Euclidean metric gE on

M \K ∼= R3 \B, and such that

µ, J ∈ C0,α
−3−q0(M).

Our definition focuses on the analysis of one asymptotically flat end, but can obviously accommo-

date M with multiple asymptotically flat ends.

For an asymptotically flat initial data set (M, g, π), one can define the following boundary inte-

gral, for a function N and a vector field X,

Br
(g,π)(N,X) =

∫
|x|=r

3∑
i,j=1

[
N (gij,i − gii,j)− (N,igij −N,jgii) +Xiπij

]
νj0 dσ0.

Here, the integrals are computed in the coordinate chart M \K∼=xR3 \B, νj0 = xj/|x|, and dσ0 is

2-dimensional Euclidean Hausdorff measure. The ADM energy E, linear momentum P , center of

mass1 C, and angular momentum J are defined by

E = 1
16π lim

r→∞
Br

(g,π)(1, 0)

Pi = 1
8π lim

r→∞
Br

(g,π)(0,
∂

∂xi
)

Ci = 1
16π lim

r→∞
Br

(g,π)(x
i, 0)

Jk = 1
8π lim

r→∞
Br

(g,π)(0, x×
∂

∂xk
),

where i, k = 1, 2, 3, and x× ∂
∂xk

is the cross product. The well-definedness of those quantities can

be found in, e.g., [1, 14, 15].

For an asymptotically flat initial data set (g, π), by Taylor expansion (A.1) at the flat data

(gE, 0),

Φ(g, π) = DΦ|(gE,0)(g − gE, π) +Q(gE,0)(g − gE, π).

1We remark that (for E 6= 0) C is sometimes written C = Ec, where c is the center of mass in other references,

e.g. [2]



LOCALIZED DEFORMATION WITH DEC 37

For (N,X) so that DΦ|∗(gE,0)(N,X) vanishes, we have∫
{R1≤|x|≤R2}

DΦ|(gE,0)(g − gE, π) · (N,X) dx = BR2

(g,π)(N,X)−BR1

(g,π)(N,X).(B.1)

Lemma B.1. Let (g, π) be an asymptotically flat initial data set on R3 \B at the rate q = q0 = 1.

Let (gθ, πθ) be an admissible family for (g, π). Consider the initial data set (ḡR, π̄R) on A1 obtained

in Proposition 4.4 (with (g1, π1) = (g, π), (g2, π2) = (gθ, πθ)):

(ḡR, π̄R) = χ(gR, πR) + (1− χ)((gθ)R, (πθ)R) + (hR, wR).

Then there is a constant C such that for θ ∈ Θ1 ×ΘR
2 and for R sufficiently large,∣∣∣∣R ∫

A1

Φ(ḡR, π̄R) · (1, 0) dx− 16π(Eθ − E)

∣∣∣∣ ≤ CR−1

∣∣∣∣R ∫
A1

Φ(ḡR, π̄R) · (0, ∂

∂xi
) dx− 8π(P θ − P )

∣∣∣∣ ≤ CR−1

∣∣∣∣R ∫
A1

Φ(ḡR, π̄R) · (xk, 0) dx− 16πR−1(Cθk − CRk )

∣∣∣∣ ≤ C(R−1 + |θ|2R−2)∣∣∣∣R ∫
A1

Φ(ḡR, π̄R) · (0, x× ∂

∂x`
) dx− 8πR−1(J θ` − J R` )

∣∣∣∣ ≤ C(R−1 + |θ|2R−2).

Proof. By (4.4) and the estimate for (hR, πR) in Proposition 4.4, the quadratic error terms are

estimated as follows:∣∣∣∣R ∫
A1

Q(gE,0)(ḡ
R − gE, π̄R) · (N,X) dx

∣∣∣∣ ≤ CR‖(ḡR − gE, π̄R)‖2C2×C1 ≤ CR−1.

We now estimate the integrals of the linearized operator. The energy and momentum integrals

can be estimated similarly, so we only show the one for the energy. By (B.1),

R

∫
A1

DΦ(ḡR, π̄R) · (1, 0) dx = R
(
B2

((gθ)R,(πθ)R)(1, 0)−B1
(gR,πR)(1, 0)

)
= B2R

(gθ,πθ)(1, 0)−BR
(g,π)(1, 0),

where we note that the rescaling in the last line accounts for the factor R. It is standard to relate

the boundary integral to the ADM energy at infinity by the divergence theorem. In particular, the

uniformity assumption (4.4) implies that there is a constant C such that for θ ∈ Θ1 ×ΘR
2 ,∣∣∣B2R

(gθ,πθ)(1, 0)− 16πEθ
∣∣∣ ≤ CR−1.

The proofs for the center of mass and angular momentum integrals are similar, so we only show

prove the one for the center of mass. By (B.1) we have

R

∫
A1

DΦ(ḡR, π̄R) · (xk, 0) dx = R
(
B2

((gθ)R,(πθ)R)(x
k, 0)−B1

(gR,πR)(x
k, 0)

)
= R−1

(
B2R

(gθ,πθ)(x
k, 0)−BR

(g,π)(x
k, 0)

)
,

where the rescaling in the last line gives an extra factor R−1 from the rescaling of the coordinate

function xk. To obtain the desired estimate, we see that the term B2R
(gθ,πθ)

(xk, 0) is estimated by

the uniformity (4.5) and BR
(g,π)(x

k, 0) = 16πCRk by definition. �
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Appendix C. Interior Schauder estimates

Let x ∈ Ω be fixed. Consider the ball Bφ(x)(x) centered at x of radius φ(x), where φ(x) is the

weight function defined in Section 2.5. We blur the distinction between Bφ(x)(x) and its coordinate

image, and we consider the diffeomorphism Fx : B1(0) → Bφ(x)(x) by z 7→ x + φ(x)z = y, where

B1(0) is the unit ball in Rn centered at the origin. For any function f defined on Bφ(x)(x), let

f̃(z) = F ∗x (f)(z) = f ◦ Fx(z)

denote the pull-back of f on B1(0).

With a minor abuse of notation, we denote for a ∈ (0, 1],

‖f‖
Ck,αφ,ϕ(Baφ(x)(x))

=
k∑
j=0

ϕ(x)φj(x)‖∇jf‖C0(Baφ(x)(x)) + ϕ(x)φk+α(x)[∇kf ]0,α;Baφ(x)(x).

One can easily obtain the following lemma.

Lemma C.1. Let f and g be functions defined on Bφ(x)(x). The following properties hold.

(1) f̃ + g = f̃ + g̃ and f̃g = f̃ g̃.

(2) ∂̃βy f = (φ(x))−|β|∂βz f̃ , where β = (β1, . . . , βk) is a multi-index, ∂βy = ∂β1

yi1
· · · ∂βk

yik
, i1, . . . , ik ∈

{1, 2, . . . , n}, and ∂βz is defined analogously.

(3) For any a ∈ (0, 1],

‖ϕ(x)f̃‖Ck,α(Ba(0)) = ‖f‖
Ck,αφ,ϕ(Baφ(x)(x))

‖ϕ(x)f̃‖L2(Ba(0)) = ‖f‖L2
φ−nϕ2 (Baφ(x)(x)).

Let U = (U1, U2, U3, . . . , Un+1) where each U i is a function defined on Bφ(x)(x). Consider the

partial differential system LU whose j-th component is

(LU)j =
n+1∑
k=1

sj+tk∑
|β|=0

bβjk∂
β
yU

k,

where

s1 = 0, t1 = 4, sj = −1, tk = 3 (j, k = 2, . . . , n+ 1).

Theorem C.2. Suppose that the operator L is strictly elliptic in the sense of [10]. For any r, s ∈ R,

let ϕj = φr+4−tjρs. Then for each k ∈ {1, 2, . . . , n+ 1},

‖Uk‖
C
tk,α

φ,ϕk
(Bφ(x)/2(x))

≤ C

n+1∑
j=1

‖(LU)j‖
C
−sj ,α

φ,φ
tj+sj ϕj

(Bφ(x)(x))
+
n+1∑
j=1

‖U j‖L2
φ−nϕ2

j

(Bφ(x)(x))

 ,
(C.1)

where C depends only on n, α, sup
j,k=1,...,n+1

|β|≤sj+tk

‖bβjk‖C`−sj ,α
φ,ϕ

sj+tk−|β|
(Bφ(x)(x))

, and the lower bound of ellipticity

of the operator L.
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Proof. By Lemma C.1, for j = 1, . . . , n+ 1,

(̃LU)j =
n+1∑
k=1

sj+tk∑
|β|=0

b̃βjk(φ(x))−|β|∂βz Ũ
k

=

n+1∑
k=1

sj+tk∑
|β|=0

(φ(x))−4+tk−|β|b̃βjk∂
β
z ((φ(x))4−tk Ũk).

Multiplying (φ(x))4+sj to the above identity, we have

(φ(x))4+sj (̃LU)j =
n+1∑
k=1

sj+tk∑
|β|=0

(φ(x))sj+tk−|β|b̃βjk∂
β
z ((φ(x))4−tk Ũk).

We remark the power of φ is specifically chosen such that, for our application to Theorem 5.6,

each of the coefficients (φ(x))sj+tk−|β|b̃βjk is bounded in the C−sj ,α(B1(0)) norm. Now we apply the

Schauder interior estimate and obtain

n+1∑
j=1

‖(φ(x))4−tj Ũ j‖Ctj ,α(B 1
2

(0))

≤ C

n+1∑
j=1

‖(φ(x))4+sj L̃jU‖C−sj ,α(B1(0)) +
n+1∑
j=1

‖(φ(x))4−tj Ũ j‖L2(B1(0))

 ,

where C depends only on n, α, sup
j,k=1,...,n+1

|β|≤sj+tk

‖(φ(x))sj+tk−|β|b̃βjk‖C−sj ,α(B1(0)), and the lower bound of

ellipticity of the operator L. By Lemma C.1 (3),

‖(φ(x))sj+tk−|β|b̃βjk‖C−sj ,α(B1(0)) = ‖bβjk‖C−sj ,α
φ,φ

sj+tk−|β|
(Bφ(x)(x))

.

For r, s ∈ R, let ϕj = φr+4−tjρs. Multiplying φr(x)ρs(x) to the above inequality, we have

n+1∑
j=1

‖ϕj(x)Ũ j‖Ctj ,α(B 1
2

(0))

≤ C

n+1∑
j=1

‖(φ(x))tj+sjϕj(x)(̃LU)j‖C−sj ,α(B1(0)) +
n+1∑
j=1

‖ϕj(x)Ũ j‖L2(B1(0))

 .

Then Lemma C.1 (3) implies the desired estimate. �

Proof of Theorem 5.8. By the definition of the weighted Hölder norm and by taking the supremum

of (C.1) among x ∈ Ω, it suffices to prove that for any u and ϕ = φrρs

sup
x∈Ω
‖f‖

Ck,αφ,ϕ(Bφ(x)(x))
≤ C sup

x∈Ω
‖f‖

Ck,αφ,ϕ(Bφ(x)/2(x))

where C denotes a positive constant that depends only on k, α, r, s, and the constant in (2.15). The

proof is a straightforward computation using (2.15). �
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Appendix D. Iteration scheme

We now prove Lemma 5.11. The proof follows essentially [6, Lemma 3.5].

Proof. By the induction hypothesis (5.13), (γm, τm) satisfies that ΦW
(g,π)(g, π)+(ψ, V )−ΦW

(g,π)(γm, τm) ∈
L2
ρ−1 × L2

ρ−1 . Use the variational result Theorem 5.5, we find (fm, Xm) such that (hm, wm) =

ρg(DΦW
(g,π)|(g,π))

∗(fm, Xm) satisfies

DΦW
(g,π)|(g,π)(hm, wm) = ΦW

(g,π)(g, π) + (ψ, V )− ΦW
(g,π)(γm, τm).

By Theorem 5.6 and the induction hypothesis (5.13),

‖(fm, Xm)‖B4×B3 ≤ C‖ΦW
(g,π)(g, π) + (ψ, V )− ΦW

(g,π)(γm, τm)‖B0×B1

≤ C‖(ψ, V )‖1+mδ
B0×B1

‖(hm, wm)‖B2×B2 ≤ C‖ΦW
(g,π)(g, π) + (ψ, V )− ΦW

(g,π)(γm, τm)‖B0×B1

≤ C‖(ψ, V )‖1+mδ
B0×B1

.

This gives the desired estimates (5.12) for p = m.

To prove (5.13) for j = m+ 1, we note that by Taylor expansion,

ΦW
(g,π)(γm+1, τm+1)

= ΦW
(g,π)(γm, τm) +DΦW

(g,π)|(γm,τm)(hm, wm) +QW(γm,τm)(hm, wm)

= ΦW
(g,π)(g, π) + (ψ, V )−DΦW

(g,π)|(g,π)(hm, wm)

+DΦW
(g,π)|(γm,τm)(hm, wm) +QW(γm,τm)(hm, wm)

= ΦW
(g,π)(g, π) + (ψ, V )

+
m−1∑
p=0

[
DΦW

(g,π)|(γp+1,τp+1)(hm, wm)−DΦW
(g,π)|(γp,τp)(hm, wm)

]
+QW(γm,τm)(hm, wm).

By Lemma A.3,

‖ΦW
(g,π)(g, π)+(ψ, V )− ΦW

(g,π)(γm+1, τm+1)‖B0×B1

≤ D

‖(hm, wm)‖2B2×B2
+ ‖(hm, wm)‖B2×B2

m−1∑
p=0

‖(γp+1, τp+1)− (γp, τp)‖B2×B2


≤ DC2

‖(ψ, V )‖2+2mδ
B0×B1

+ ‖(ψ, V )‖2+mδ
B0×B1

m−1∑
p=0

‖(ψ, V )‖pδB0×B1


≤ 2DC2ε1−δ(1− εδ)−1‖(ψ, V )‖1+(m+1)δ

B0×B1
.

Choose ε > 0 small enough so that 2DC2ε1−δ(1− εδ)−1 ≤ 1. �
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