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Abstract. We prove the rigidity of positive mass theorem for asymptotically hyperbolic mani-

folds. Namely, if the mass equality p0 =
√

p21 + · · · + p2n holds, then the manifold is isometric to

hyperbolic space. The result was previously proven for spin manifolds [14, 19, 2, 5] or under special

asymptotics [1].

1. Introduction

One of the central topics in differential geometry is to understand how Riemannian manifolds

can be characterized under a curvature assumption. The seminal work of R. Schoen and S.-T.

Yau [17] of the Riemannian positive mass theorem establishes a characterization of Euclidean

space. Specifically, Euclidean space is the unique asymptotically flat manifold with nonnegative

scalar curvature that has zero ADM mass, which is an invariant defined at the manifold infinity.

Later, E. Witten [21] introduced a spinor approach, which was adapted by M. Min-Oo [14] to

characterize hyperbolic space among a class of manifolds whose exterior regions are (roughly)

identical to hyperbolic space and was refined by L. Andersson and M. Dahl [2]. Based on the spinor

approach, X. Wang [19] defined the mass and established the positive mass theorem for conformally

compact, asymptotically hyperbolic manifolds (Xn, g) whose conformal boundary is the unit round

sphere (Sn−1, h) and with the following expansion:

g = sinh−2(ρ)
(
dρ2 + h+ ρn

n κ+O(ρn+1)
)

(1.1)

where ρ is a boundary defining function and κ is a symmetric (0, 2)-tensor defined on Sn−1. The

mass (p0, p1, . . . , pn) of g is defined by

p0 =

∫
Sn−1

trhκ dµh, pi =

∫
Sn−1

xitrhκ dµh for i = 1, . . . , n

where (x1, . . . , xn) are the Cartesian coordinates of Rn restricted on Sn−1. It is an intriguing

observation that the mass consists of (n+1) numbers (p0, p1, . . . , pn), instead of a single number, the

ADM mass, as for the asymptotically flat manifolds. In [5], P. Chruściel and M. Herzlich extended

the definition of mass to a larger class of manifolds without assuming conformal compactification

and obtained a flux integral formula, which we will recall in Definition 2.6. As a result, the following

positive mass theorem holds for spin manifolds.

Theorem 1 ([19, 5]). Let n ≥ 3 and (X, g) an n-dimensional asymptotically hyperbolic manifold

with scalar curvature Rg ≥ −n(n− 1). Suppose X is spin. Then p0 ≥
√
p2

1 + · · ·+ p2
n with equality

only if (X, g) is isometric to hyperbolic space.
1
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It has been conjectured that the positive mass theorem for asymptotically hyperbolic manifolds

holds without the spin assumption. Assuming that the mass aspect function trhκ in (1.1) is either

everywhere positive, zero, or negative on Sn−1, L. Andersson, M. Cai, and G. Galloway [1] proved

the positive mass theorem for dimensions 3 ≤ n ≤ 7. For more general asymptotics, an approach

using Jang’s equation to the positivity of mass in three dimensions was announced by A. Sakovich.

A recent paper [4] of P. Chruściel and E. Delay proves the positivity by a gluing argument in general

dimensions. Nevertheless, these two approaches to the positivity of mass are indirect and do not

seem to give information about the equality case, which is the focus of the current paper.

Our main result is the following rigidity statement. We define the technical terms in Section 2.

Theorem 2. Let n ≥ 3 and (M, g) an n-dimensional asymptotically hyperbolic manifold with scalar

curvature Rg ≥ −n(n−1) and with equality p0 =
√
p2

1 + · · ·+ p2
n, where (p0, p1, . . . , pn) is the mass

of g. Suppose the following holds:

(?) There is an open neighborhood M of g in the space of asymptotically hyperbolic manifolds

such that the inequality p0(γ) ≥
√

(p1(γ))2 + · · ·+ (pn(γ))2 holds if γ ∈ M and the scalar

curvature satisfies Rγ = Rg.

Then (M, g) is isometric to hyperbolic space.

Using positivity of mass proven in [4], the assumption (?) can be dropped and thus we arrive at

the following result.

Theorem 3. Let n ≥ 3 and (M, g) an n-dimensional asymptotically hyperbolic manifold with scalar

curvature Rg ≥ −n(n− 1) and with the equality p0 =
√
p2

1 + · · ·+ p2
n. Then (M, g) is isometric to

hyperbolic space.

We outline the proof of Theorem 2, which is included in Section 4. We show that a metric

that realizes the mass equality is a minimizer of a functional F , defined by (4.5), subject to a

scalar curvature constraint. By studying the first variation of this functional, we show that such a

metric must be static and, in fact, possess a static potential with certain asymptotics. The desired

characterization of hyperbolic space follows from proving a static uniqueness result.

We remark that the approach is motivated by a constrained minimization scheme proposed by

R. Bartnik [3] for his quasi-local mass program. The connection between the constrained minimiza-

tion and mass rigidity was recently employed by D. Lee and the first named author in their proof

to the rigidity conjecture of the spacetime positive mass theorem [11].

In our proof of Theorem 2, it is essential to analyze the scalar curvature map and to derive the

following result.

Theorem 4. Let (M, g) be an n-dimensional asymptotically hyperbolic manifold. For k ≥ 2 and

s ∈ (−1, n), the linearized scalar curvature map

Lg : Ck,α−s (M)→ Ck−2,α
−s (M)

is surjective. As a consequence, the scalar curvature map is locally surjective at g. Namely, there are

constants ε, C > 0 such that if ‖φ−Rg‖Ck−2,α
−s (M)

< ε, then there is a metric γ with ‖γ−g‖
Ck,α−s (M)

≤
Cε that realizes the scalar curvature Rγ = Rg + φ.
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Theorem 4 is also of independent interest from the perspective of scalar curvature deformation.

For example, it produces infinitely many asymptotically hyperbolic metrics with scalar curvature

greater than −n(n− 1) by perturbation.

We remark that the weighted Hölder space is chosen as our analytical framework because the

known results on the positivity of mass require that regularity. It is shown that the Einstein

constraint map is surjective among the appropriate weighted Sobolev spaces by E. Delay and

J. Fougeirol [6]. However, it does not seem to imply Theorem 4. In fact, our proof relies on a

different argument. One difficulty is that the dual space (Ck−2,α
−s )∗ is not well-understood. Efforts

are made to analyze the kernel of the adjoint operator L∗g on (Ck−2,α
−s )∗ without assuming the kernel

elements to decay at infinity. See Section 3 and more specifically, Theorem 3.5.

Finally, we remark that the proof of Theorem 4 uses the assumption that an asymptotically

hyperbolic manifold is complete without boundary (see Definition 2.3). For manifolds with compact

boundary, while the same argument still works if one imposes either Dirichlet or Neumann type

condition on the metrics, we need the surjectivity to hold for metrics with stronger vanishing

condition at the boundary to establish the mass rigidity. In a forthcoming paper, we use a different

argument and extend Theorem 4 for metrics that coincides with g of infinite order at the boundary.

It enables us to prove the mass rigidity for asymptotically locally hyperbolic manifolds. In that

setting, the model spaces that we consider have compact boundary with natural geometric boundary

conditions.
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2. Preliminaries

2.1. Weighted Hölder spaces and asymptotically hyperbolic manifolds. Denote by Hn the

n-dimensional hyperbolic space with scalar curvature −n(n−1). As our model for hyperbolic space,

we consider the upper-sheet of the hyperboloid in Minkowski space (Rn,1,−dt2 + dx2
1 + · · ·+ dx2

n),

defined by

Hn =
{

(x, t) = (x1, . . . , xn, t) ∈ Rn,1 : t =
√

1 + x2
1 + · · ·+ x2

n

}
.

The restriction of the Minkowski metric to the upper-sheet hyperboloid is hyperbolic space and

can be expressed in the spherical coordinates as

b =
1

1 + r2
dr2 + r2h,(2.1)

where r = |x| :=
√
x2

1 + · · ·+ x2
n is the radial coordinate, and h is the standard metric on the round

unit (n− 1)-sphere. We refer (Rn, b) as the hyperboloid model of hyperbolic space.
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The volume form of b is dµb = rn−1
√

1+r2
dr dω, where dω is the volume form on the round unit (n−1)-

sphere. By co-area formula, it is direct to see that the induced volume form on Sr = {|x| = r} of

the hyperbolic metric b is the same as the standard volume form on the round (n − 1)-sphere of

radius r. We fix an orthonormal frame {e1, . . . , en} on Hn \B defined by, with respect the spherical

coordinates {r, θ1, . . . , θn−1},

e1 =
√

1 + r2 ∂
∂r , e2 = r−1 ∂

∂θ1
, . . . , en = (r sin(θ1) . . . sin(θn−2))−1 ∂

∂θn−1
.(2.2)

Definition 2.1. Let B be a ball in Rn centered at the origin and denote Hn \B = (Rn \B, b). For

k = 0, 1, 2, . . . , α ∈ (0, 1), and q ∈ R, we define the weighted Hölder spaces Ck,α−q (Hn \ B) as the

collection of Ck,αloc (Hn \B) functions f on Hn \B that satisfy

‖f‖
Ck,α−q (Hn\B)

:=
∑

`=0,1,...,k

sup
x∈Hn\B

|x|q|∇̊`f(x)|b + sup
x∈Hn\B

|x|q[∇̊kf ]α;B1(x) <∞

where ∇̊ is the covariant derivative with respect to b and

[∇̊kf ]α;B1(x) = sup
1≤i1,...,ik≤n

sup
y 6=z∈B1(x)

|ei1 · · · eik(f)(y)− ei1 · · · eik(f)(z)|
(db(y, z))α

.

We extend the definition for tensors of arbitrary types: a tensor h ∈ Ck,α−q (Hn \ B) if and only if

each tensor component with respect to the orthonormal frame lies in Ck,α−q (Hn \B).

Let M be a smooth manifold covered by an atlas that consists of a non-compact chart Φ : M\K ∼=
Hn \ B and finitely many compact charts. We define the weighted Hölder norm ‖f‖

Ck,α−q (M)
(for a

function or tensor) to be the sum of the weighted norm ‖Φ∗f‖Ck,α−q (Hn\B)
and the usual Ck,α norms

on compact charts. Denote by Ck,α−q (M) the completion of Ck,αc (M) functions with respect to the

weighted Hölder norm. We often suppress M when the context is clear.

Notation. We use the notation Ok,α(r−q) to denote a function or tensor, that belongs to the

corresponding weighted space Ck,α−q (M). We simply write O(r−q) in place of O0(r−q).

We collect the following basic facts about the weighted Hölder spaces.

Lemma 2.2. Let k = 0, 1, 2, . . . , α ∈ (0, 1), and q, s ∈ R.

(1) |x|−q ∈ Ck,α−q (M \K).

(2) f ∈ Ck,α−q (M \K) if and only if |x|sf ∈ Ck,αs−q(M \K).

(3) If f ∈ Ck,α−s , g ∈ C
k,α
−q , then fg ∈ Ck,α−s−q and there is a constant C > 0 such that

‖fg‖
Ck,α−s−q

≤ C‖f‖
Ck,α−s
‖g‖

Ck,α−q
.

(4) The inclusion Ck,α−s (M) ⊂ Ck,β−s+ε(M) is compact for any ε > 0 and β < α.

Proof. The first three statements follow directly from the definition.

For the last statement, we let {ui} be a sequence of functions in Ck,α−s with ‖ui‖Ck,α−s = 1. Applying

Arzela-Ascoli on a sequence of compact sets that exhaust M and by a diagonal sequence argument,

there is a subsequence of {ui} (which we still denote by {ui}, without loss of generality) and a

function u ∈ Ck,αloc so that ui converges to u locally uniformly in Ck,β. That is, for ε > 0 and a
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compact subset Ω, there is an integer I (depending on ε and Ω) such that ‖u − ui‖Ck,β(Ω) < ε for

all i ≥ I. In fact, u ∈ Ck,β−s because, for each compact set Ω,

‖u‖
Ck,β−s (Ω)

= lim
i→∞
‖ui‖Ck,β−s (Ω)

≤ 1.

Let Br be the coordinate ball of radius r. Using ‖ui−u‖Ck,β−s+ε(M\Br) ≤ r
−ε(‖ui‖Ck,β−s + ‖u‖

Ck,β−s
), we

have that ui converges to u in Ck,β−s+ε(M). �

Definition 2.3. Let n ≥ 3 and q ∈
(
n
2 , n

)
. Let M be an n-dimensional, connected, complete

manifold without boundary endowed with a Riemannian metric g ∈ C∞loc. We say that (M, g) is

asymptotically hyperbolic (of order q) if the following holds:

(1) There exists a diffeomorphism M \K ∼= Hn \B for some compact subset K ⊂M . We call

the induced coordinate chart as the chart at infinity.

(2) With respect to the chart at infinity, g − b ∈ C2,α
−q (M \K).

(3) The scalar curvature satisfies Rg + n(n− 1) ∈ C0,α
−n−ε(M) for some ε > 0.

Remark 2.4. By direct computations, the assumption (2) implies that the Ricci curvature of g

satisfies Ricg = −(n− 1)g +O0,α(r−q).

To compare Definition 2.3 with various notions of asymptotically hyperbolic manifolds in the

existing literature, we express the assumption (2) in Definition 2.3 in coordinates. It appears that

our asymptotic assumption is more general than (1.1).

Lemma 2.5. A (0, 2)-tensor g satisfies g − b ∈ C2,α
−q (M \K) if and only if the tensor components

have the following asymptotics in spherical coordinates:

g =

(
1

1 + r2
+O2,α(r−2−q)

)
dr2 +O2,α(r−q)drdθj + (r2h+O2,α(r2−q))dθjdθ` as r →∞.

By changing the coordinate r = (sinh ρ−1), we can express g as

g = sinh−2(ρ)
[
(1 +O2,α(ρq))dρ2 +O2,α(ρq)dρdθi + (h+O2,α(ρq))dθjdθ`

]
as ρ→ 0.

Proof. Via the diffeomorphism on the chart at infinity, it suffices to prove the result for tensors

defined on Hn \B. Express g in the spherical coordinates as follows:

g = Adr2 + 2
∑
j

Bj dr dθj +
∑
j,`

Cj` dθj dθ`.(2.3)

By definition, κ := g − b belongs to Ck,α−q (Hn \ B) if and only if each tensor component κ(ei, ej) ∈
Ck,α−q (Hn \B). By (2.2) and (2.3), we have

κ(e1, e1) = (1 + r2)A, κ(e1, ej+1) =
√

1 + r2r−1Bj , and κ(j+1)(`+1) = r−2Cj`.

Thus, κ ∈ Ck,α−q (Hn \B) if and only if the tensor components satisfy

A ∈ Ck,α−2−q, Bj ∈ Ck,α−q , and Cj` ∈ Ck,α2−q.

�
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2.2. Wang-Chruściel-Herzlich mass, and an alternative definition. X. Wang [19] defined

the mass for asymptotically hyperbolic manifolds that are conformally compact. For the class of

asymptotically hyperbolic manifolds adopted in the current paper, we use the following more general

definition of P. Chruściel and M. Herzlich [5].

Definition 2.6. Let (M, g) be an asymptotically hyperbolic manifold. Given a function V ∈
C1(M \K), we define the mass integral

H(V ) = lim
r→∞

∫
Sr

[
V
(
d̊iv h− d(t̊rh)

)
(ν0) + (t̊rh)dV (ν0)− h(∇̊V, ν0)

]
dσb,(2.4)

where h = g − b, ν0 is the outward unit normal vector to Sr = {|x| = r}, and d̊iv, t̊r, ∇̊, are all

with respect to b. The volume form dσb is the restriction of the volume form of b on Sr. The mass

(p0, p1, . . . , pn) of Wang-Chruściel-Herzlich is defined by

p0 = H(
√

1 + r2) and pi = H(xi) for i = 1, . . . , n.

Remark 2.7. In the above definition, we can replace the functions
√

1 + r2 and xi by
√

1 + r2 +

O2(r1−q) and xi + O2(r1−q) respectively, since the differences in the corresponding mass integrals

go to zero in the limit. For the same reason, we may also replace ν0, d̊iv, t̊r, ∇̊, and dσb in (2.4) by

the corresponding objects with respect to another asymptotically hyperbolic metric and still obtain

the same limit.

Remark 2.8. The quantity (p0, p1, . . . , pn) is a geometric invariant among an appropriate class of

charts at infinity (see [5], also [9]). We denote the functions appearing in the above definition by

V0 =
√

1 + r2 and Vi = xi for i = 1, . . . , n.

In Hn, these functions satisfy the differential equation ∇̊2Vi = Vib, for i = 0, 1, . . . , n. They are

so-called the static potentials. We will discuss general properties of static potentials in an asymp-

totically hyperbolic manifold in Section 3.

We recall an equivalent definition of mass, which will be used in the proof of the main theorem.

This formula is known to the experts and is stated in [10, Theorem 3.3], whose proof is similar to

the analogous formula for asymptotically flat manifolds.

Proposition 2.9. Let (M, g) be an asymptotically hyperbolic manifold. If V ∈ C2(M \K) satisfies

∇̊2V = V b,

then

lim
r→∞

∫
Sr

(Ricg + (n− 1)g)(∇̊V, ν0) dσb = −n−2
2 H(V ),

provided the quantity on either side of the equation converges.

2.3. Operators asymptotic to ∆ − n. To analyze the scalar curvature operator on an asymp-

totically hyperbolic manifold, the following class of operators naturally appears.

Definition 2.10. Let (M, g) be asymptotically hyperbolic and ∆ the Laplace-Beltrami operator

of g. For k ≥ 2, we say that the differential operator T : Ck,α−s → Ck−2,α
−s defined by Tu = ∆u+ ξ ·

∇u + ηu is asymptotic to ∆ − n if there is a number ε > 0 such that the vector field ξ ∈ Ck−2,α
−ε

and the function η + n ∈ Ck−2,α
−ε .
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We recall the following isomorphism result.

Lemma 2.11. Let (M, g) be an n-dimensional asymptotically hyperbolic manifold and s ∈ (−1, n).

The operator T0 : Ck,α−s (M)→ Ck−2,α
−s (M) defined by T0u = ∆u− nu is an isomorphism.

Proof. The isomorphism result is proven for asymptotically hyperbolic manifolds that are confor-

mally compact in [13, Proposition 3.3] (based on the argument of [8, Section 3]). It is clear that

the proof can be adapted for our class of asymptotically hyperbolic manifolds. �

Proposition 2.12. Let (M, g) be an n-dimensional asymptotically hyperbolic manifold and s ∈
(−1, n). Let T : Ck,α−s → Ck−2,α

−s be asymptotic to ∆− n. Then T is Fredholm.

Proof. We write Tu = T0u+ξ ·∇u+(η+n)u. Note T0 is an isomorphism by Lemma 2.11, and hence

Fredholm. To show that T is Fredholm, it suffices to show that the map T − T0 : Ck,α−s → Ck−2,α
−s is

compact.

Let {ui} be a sequence of functions in Ck,α−s with ‖ui‖Ck,α−s = 1, we show that {(T − T0)ui} has

a convergent subsequence in Ck−2,α
−s . By Lemma 2.2, Ck,α−s ⊂ Ck−s+ε is compact for ε > 0, so there

is a subsequence (still denoted by {ui} without loss of generality) that converges to u in Ck−s+ε.

Observe the sequence {(T − T0)ui} converges in Ck−2,α
−s because

‖(T − T0)(ui − u)‖
Ck−2,α
−s

= ‖ξ · ∇(ui − u) + (η + n)(ui − u)‖
Ck−2,α
−s

≤ C
[
‖ξ‖

Ck−2,α
−ε

‖∇(ui − u)‖
Ck−2,α
−s+ε

+ ‖η + n‖
Ck−2,α
−ε

‖ui − u‖Ck−2,α
−s+ε

]
≤ C‖ui − u‖Ck−1,α

−s+ε
≤ C‖ui − u‖Ck−s+ε → 0 as i→∞.

�

3. Surjectivity of the linearized scalar curvature map

In this section, we study the scalar curvature of asymptotically hyperbolic manifolds. We prove

Theorem 4 that the linearized scalar curvature operator Lg is surjective at the end of this section.

Our approach is to analyze the kernel of the formal L2-adjoint operator L∗g. Specifically, we show

that a non-zero kernel element of L∗g must grow linearly in a cone region in Theorem 3.5.

Let (Ω, g) be a Riemannian manifold. The linearization Lg of the scalar curvature map at g acts

on a symmetric (0, 2)-tensor h ∈ C2
loc by the formula

Lgh = −∆(trh) + div div h− h · Ricg,(3.1)

and the formal L2-adjoint operator L∗g is given by, for a function V ,

L∗gV = −(∆V )g +∇2V − V Ricg.(3.2)

Here div, tr, ·, ∆, and ∇ are all taken with respect to g.

We say that (Ω, g) is static if it admits a function V ∈ C2
loc(Ω), not identically zero, that satisfies

the static equation L∗gV = 0. We call a solution V to this equation a static potential. The static

equation (3.2) for V is equivalent to the following equation:

∇2V =
(

Ricg − 1
n−1Rg g

)
V.
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Example 3.1. It is well-known that a static manifold has constant scalar curvature on each con-

nected component [7], so a static asymptotically hyperbolic manifold (which is assumed to be con-

nected in Definition 2.3) must have constant scalar curvature −n(n− 1). Thus, the static equation

(3.2) implies

∇2V = (Ricg + ng)V

∆V = nV.
(3.3)

The prototype of a static asymptotically hyperbolic manifold is hyperbolic space. Recall in Re-

mark 2.8, the space of static potentials is an (n+ 1)-dimensional real vector space spanned by the

functions
√

1 + r2, x1, . . . , xn with respect to the coordinates of the hyperboloid model. They come

from the restriction of the Minkowski coordinate functions t, x1, . . . , xn to the hyperboloid.

We would like to analyze the asymptotic behavior of a static potential, by studying the static

equation along geodesic rays. Note ∇2V = (Ricg+ng)V =
(
g +O0,α(r−q)

)
V by the asymptotically

hyperbolic assumption. The corresponding equation along a geodesic ray is asymptotic to u′′ = u.

We prove in the next three technical lemmas that the solutions to a large class of ODEs share

similar properties as the solutions to u′′ = u, which are generated by et, e−t.

Lemma 3.2. Let P (t), Q(t) ∈ C0,α([0,∞)) and Q > 0. Consider the ODE given by

u′′ = Pu′ +Qu.(3.4)

Then the following holds:

(1) A solution u has at most one zero, unless u is identically zero.

(2) If u and v are two solutions satisfying the initial condition u(0) ≥ v(0) and u′(0) ≥ v′(0),

then u(t) > v(t) and u′(t) > v′(t) for all t > 0, unless u is identical to v.

(3) There is a solution u with u(t) > 0 and u′(t) < 0, for all t.

Proof. Let K(t) = exp
(
−
∫ t

0 P (s) ds
)
> 0. Then

(Ku′)′ = KQu.(3.5)

To see (1), suppose that u is not identically zero and, to give a contradiction, that u has two or

more zeros. Let t1 < t2 be two adjacent zeros. We may without loss of generality assume that

u > 0 on (t1, t2). This implies that u′(t1) ≥ 0 and u′(t2) ≤ 0. In fact, both inequalities are strict;

otherwise u is identically zero by uniqueness of solutions. However, this contradicts the fact that

Ku′ is increasing on [t1, t2] by (3.5). For (2), by linearity it suffices to show that if u is a solution

satisfying the initial condition u(0) ≥ 0 and u′(0) ≥ 0, then u(t) > 0 and u′(t) > 0 for all t > 0,

unless u is identically zero. The desired statement in (2) follows from (3.5) and by observing that

if u ≥ 0 then Ku′ is increasing.

We now prove (3) by constructing a compact family of solutions. For an integer j > 0, let uj be

the solution that satisfies uj(0) = 1 and uj(j) = 0. By (1) and (2), we have 0 ≤ uj < uj+1 < uj+2 <

· · · < 1 and u′j < u′j+1 < u′j+2 < · · · < 0 for t ∈ (0, j]. Using (3.4) to bound the higher derivatives, we

see that uj is locally uniformly bounded in C2,α. By Arzela-Ascoli, a subsequence locally uniformly

converges to a solution u in C2([0,∞)) that satisfies u(0) = 1 and 0 ≤ u(t) ≤ 1, u′ ≤ 0 for all t. It

is straightforward to verify that the inequalities are strict: u(t) > 0 and u′(t) < 0 for all t.
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�

Lemma 3.3. Let P (t), Q(t) ∈ C0,α([0,∞)). Suppose 1 + Q > 0 and that there are constants

d,C0 > 0 such that |P (t)|, |Q(t)| ≤ C0e
−dt. Then there are two linearly independent solutions u1

and u2 to the homogeneous equation

u′′ = Pu′ + (1 +Q)u

and u1, u2 satisfy the following: there is a constant C > 0 such that, for all t,

C−1et ≤ u1(t) ≤ Cet, C−1et ≤ u′1(t) ≤ Cet

C−1e−t ≤ u2(t) ≤ Ce−t, C−1e−t ≤ −u′2(t) ≤ Ce−t.
(3.6)

Proof. Let u1 be a solution with the initial condition u1(0) = 1 and u′1(0) > 0. By (2) in Lemma 3.2,

we have u1 > 0 and u′1 > 0 for all t. Let w(t) = u1(t) + u′1(t). Then w > 0 satisfies

w′ = (1 + P )u′1 + (1 +Q)u1.

It implies the following differential inequality for w:

(1− |P | − |Q|)w ≤ w′ ≤ (1 + |P |+ |Q|)w.

Integrating the inequality gives

w(0) exp

(∫ t

0
(1− |P (s)| − |Q(s)|) ds

)
≤ w(t) ≤ w(0) exp

(∫ t

0
(1 + |P (s)|+ |Q(s)|) ds

)
.

That is, there is a constant C1 > 0 (depending only on w(0), ‖P‖L1 , ‖Q‖L1) such that

C−1
1 et ≤ u1(t) + u′1(t) ≤ C1e

t.(3.7)

This gives the upper bound for u1, u
′
1 in (3.6). To derive the lower bound for u1, u

′
1, we set z(t) =

u1(t) − u′1(t). Then z′ = −z − Pu′1 − Qu1 and |z′ + z| ≤ 2C0C1e
(1−d)t. Solving the differential

inequality gives |z| ≤ C2(e(1−d)t + e−t + te−t) for some constant C2 > 0. For t sufficiently large, we

derive |u1(t)−u′1(t)| ≤ 1
2C
−1
1 et. Together with (3.7), we obtain the desired estimate (3.6) for u1, u

′
1.

By (3) of Lemma 3.2, there is a solution u2 so that u2(t) > 0 and u′2(t) < 0 for all t. Set

h(t) = u2(t)− u′2(t). Then h > 0 satisfies

h′ = (1− P )u′2 − (1 +Q)u2

and hence (−1−|Q|− |P |)h ≤ h′ ≤ (−1 + |Q|+ |P |)h. Just as computing above, we have C−1e−t ≤
u2(t)− u′2(t) ≤ Ce−t, which gives the upper bound for u2, u

′
2 in (3.6). Similarly, by estimating the

differential inequality for u2 + u′2, we derive the desired lower bound.

Lastly, we note that the two solutions u1, u2 are linearly independent because their Wronskian

is not zero and furthermore, by (3.6),

det

[
u1 u2

u′1 u′2

]
= u1u

′
2 − u2u

′
1 ≤ −2C−2 for all t.(3.8)

�



MASS RIGIDITY FOR HYPERBOLIC MANIFOLDS 10

Lemma 3.4. Let P (t), Q(t) ∈ C0,α([0,∞)) and f(t) ∈ C0([0,∞)). Suppose 1 + Q > 0 and that

there are constants d,C0 > 0 such that |P (t)|, |Q(t)|, |f(t)| ≤ C0e
−dt. Let u solve

u′′ = Pu′ + (1 +Q)u+ f.(3.9)

Then there are constants C > 0 and c1, c2 such that, for all t ≥ a,

|u(t)−
(
c1u1(t) + c2u2(t)

)
| ≤

{
Ce−dt for d 6= 1

Cte−t for d = 1
.(3.10)

Proof. Let up be a particular solution to (3.9). Notice that u−up satisfies the homogeneous equation,

and hence is a linear combination of u1, u2, where {u1, u2} is the set of fundamental solutions from

Lemma 3.3. It suffices to show that the estimate (3.10) holds for up.

By the method of variation of parameters, we can choose up to be

up = α1u1 + α2u2,

where the functions α1, α2 are defined by

α1(t) = −
∫ t

0

u2(s)f(s)

u1(s)u′2(s)− u2(s)u′1(s)
ds

α2(t) =

∫ t

0

u1(s)f(s)

u1(s)u′2(s)− u2(s)u′1(s)
ds.

If d > 1, using (3.6), (3.8), and the assumption on f , we see that both integrals converge as

t→∞. Let Ai = limt→∞ αi(t) for i = 1, 2. There is a constant C > 0 so that

|α1(t)−A1| ≤
∫ ∞
t

∣∣∣∣ u2(s)f(s)

u1(s)u′2(s)− u2(s)u′1(s)

∣∣∣∣ ds ≤ C ∫ ∞
t

e−s|f(s)| ds ≤ Ce−(d+1)t

|α2(t)−A2| ≤
∫ ∞
t

∣∣∣∣ u1(s)f(s)

u1(s)u′2(s)− u2(s)u′1(s)

∣∣∣∣ ds ≤ C ∫ ∞
t

es|f(s)| ds ≤ Ce−(d−1)t.

It implies that

|up −A1u1 −A2u2| ≤ |α1 −A1|u1 + |α2 −A2|u2 ≤ Ce−dt.

If 0 < d ≤ 1, then limt→∞ α2(t) may not converge. Nevertheless, there is a constant C > 0 such

that |α2| ≤ Ce(1−d)t if d 6= 1 and |α2| ≤ Ct if d = 1. Together with the above estimate for α1, we

obtain

|up −A1u1| ≤ |α1 −A1|u1 + |α2|u2 ≤

{
Ce−dt for d 6= 1

Cte−t for d = 1
.

�

We proceed to discuss the asymptotics of a function that solves the static equation up to an

error term. We define a cone U as an unbounded open subset in M \K that consists of points in

spherical coordinates such that, for some r0 > 0 and a non-empty open subset Θ in the domain of

angular coordinates on Sn−1:

U = {(r, θ1, · · · , θn−1) ∈M \K : r > r0 and (θ1, . . . , θn−1) ∈ Θ}.



MASS RIGIDITY FOR HYPERBOLIC MANIFOLDS 11

Theorem 3.5. Let (M, g) be an asymptotically hyperbolic manifold, and V ∈ C2
loc(M \K) satisfy

L∗gV = τ(3.11)

where τ ∈ C0
1−q(M \K) is a symmetric (0, 2)-tensor. Then V satisfies precisely one of the following:

(1) There is a cone U ⊂M \K and a constant C > 0 such that

C−1|x| ≤ |V (x)| ≤ C|x| for all x ∈ U.

(2) There are constants C > 0 and 0 < d ≤ 1 such that

|V (x)| ≤ C|x|−d for all x ∈M \K.

Proof. Equation (3.11) and the assumption on τ imply

∇2V =
(

Ricg − 1
n−1Rg g

)
V + τ − ( 1

n−1tr τ) g

=
(
g +O0,α(r−q)

)
V +O(r1−q).

(3.12)

Let γ(t), 0 ≤ t < ∞, be the geodesic emanating from a point p ∈ ∂K with the initial velocity

γ′(0) = ∂r, parametrized by the arc length parameter t, i.e.

t = dg(p, γ(t)).

With respect to the hyperbolic metric b on M \ K ∼= Hn \ B and letting o be the origin of Hn,

we have db(o, γ(t)) = sinh−1(|γ(t)|) and hence |db(p, γ(t)) − sinh−1(|γ(t)|)| ≤ db(o, p) by triangle

inequality, where |γ(t)| denotes the radial coordinate of the point γ(t). Since the distance in g is

comparable to the distance in b by the asymptotically hyperbolic assumption, there is a constant

C > 0 such that |t− sinh−1(|γ(t)|)| ≤ C for all t. Thus, there is a constant C > 0 such that

C−1et ≤ |γ(t)| ≤ Cet.(3.13)

Let u(t) = V ◦ γ(t). The equation (3.12) implies that u satisfies the following ODE:

u′′ = ∇2V (γ′(t), γ′(t)) +∇V (∇γ′(t)γ′(t))

= ∇2V (γ′(t), γ′(t))

= (1 +Q(t))u+ f,

where |Q(t)| ≤ Ce−qt and |f(t)| ≤ Ce(1−q)t by (3.12) and (3.13). By Lemma 3.4, there is a constant

C > 0 and d ∈ (0, 1] such that V satisfies

(1) either C−1et ≤ |V (γ(t))| ≤ Cet for all t

(2) or |V (γ(t))| ≤ Ce−dt for all t.

If (1) holds for some geodesic γ, by continuous dependence of ODE solutions on the initial conditions

and (3.13), the estimate C−1|x| ≤ |V (x)| ≤ C|x| holds in a cone. If (1) does not hold for any geodesic

γ, then (2) holds for all γ(t) (with a uniform constant C by compactness of ∂K). Since any point

x ∈M \K could be reached by a radial geodesic from ∂K and by (3.13), we have |V (x)| ≤ C|x|−d

for all x ∈M \K. �
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Corollary 3.6. Let (M, g) be an asymptotically hyperbolic manifold, and V ∈ C2
loc solve L∗gV = 0

in M . If V is not identically zero, then there is a cone U ⊂M \K and a constant C > 0 such that

V satisfies

C−1|x| ≤ |V (x)| ≤ C|x| for all x ∈ U.

Proof. Recall ∆V = nV in (3.3). By letting τ = 0 in Theorem 3.5, we have either the desired

estimate holds, or there are constants d,C > 0 such that |V (x)| ≤ C|x|−d for all x ∈ M \ K.

However, the latter case implies that V is identically zero by maximum principle. �

We now prove the main result in this section.

Proof of Theorem 4. It suffices to show that the linearized scalar curvature map is surjective. Local

surjectivity of the scalar curvature map follows from standard functional analysis.

We first show that the range of Lg is closed. Define the operator T (u) := Lg(ug) for functions

u ∈ Ck,α−s (M). Then 1
1−nT (u) = ∆u + 1

n−1Rgu is asymptotic to ∆ − n and hence Fredholm by

Proposition 2.12. In particular, the range of T has finite codimension, and so does the range of Lg.

It implies that the range of Lg is closed.

To see surjectivity of Lg, we show that the adjoint operator L∗g : (Ck−2,α
−s )∗ → (Ck,α−s )∗ has a

trivial kernel. Let u ∈ (Ck−2,α
−s )∗ such that L∗gu = 0. Note that since C∞c is dense in Ck−2,α

−s , u is

particularly a distribution. By elliptic regularity, u ∈ Ck,αloc , and the pairing is given by

u(φ) =

∫
M
uφ dµg, for all φ ∈ C∞c .(3.14)

Suppose, to give a contradiction, that u is not identically zero. We shall show that the above

pairing is not bounded for some φ ∈ Ck−2,α
−s . By Corollary 3.6, there is a constant C > 0 such that

|u(x)| ≥ C|x| in a nonempty cone U ⊂ M \K. We may without loss of generality assume u > 0

and hence u(x) ≥ C|x| on U . Let φ(x) be a non-negative function in Ck−2,α
−s so that φ(x) = |x|−s

in a smaller cone U ′ ⊂ U ⊂M \K and φ ≡ 0 outside U . Let φi ∈ C∞c (U) be a monotone sequence

of non-negative functions that converge to φ in Ck−2,α
−s (for example, let φi = χiφ where χi is a

monotone sequence of bump functions uniformly bounded in C∞). Then

u(φ) = lim
i→∞

u(φi) = lim
i→∞

∫
M
uφi dµg =

∫
M
uφ dµg,

where the first equality is from continuity of u as a functional, the second equality is by (3.14),

and the last equality is by monotone convergence theorem. However, since s ≤ n and dµg =(
rn−1
√

1+r2
+O(rn−2−q)

)
drdω, so the last integral diverges to infinity:

∫
M
φu dµg ≥ C

∫
U ′
r1−s dµg =∞.

�
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4. Mass minimizer and static uniqueness

Let (M, g) be an n-dimensional asymptotically hyperbolic manifold. Consider the following Ba-

nach space of symmetric (0, 2)-tensors:

B = {g + h : h ∈ C2,α
−q (M) is a symmetric (0, 2)-tensor}

M ⊂ B is an open neighborhood of g containing positive definite tensors.
(4.1)

Suppose f ∈ C2,α
loc (M) satisfies the following asymptotics, for some a0, a1, . . . , an ∈ R,

f(x) = a0

√
1 + r2 − (a1x1 + · · ·+ anxn) +O2,α(|x|1−q).(4.2)

By direct computation,

∇2
√

1 + r2 =
√

1 + r2 g +O0,α(r1−q)

∇2xi = xi g +O0,α(r1−q) for i = 1, . . . , n.
(4.3)

Therefore, we have

L∗gf = −(∆f)g +∇2f − fRicg = O0,α(r1−q).(4.4)

We define the corresponding functional F on M by

F(γ) = a0p0(γ)− (a1p1(γ) + · · ·+ anpn(γ))−
∫
M

(R(γ) + n(n− 1)) f dµg(4.5)

where R :M→ C0,α
−q is the scalar curvature map.

It may not be immediately obvious that F(γ) is finite for γ ∈ M. Since γ is not assumed to

satisfy the scalar curvature assumption (3) of Definition 2.3, either term in the definition of F may

diverge. In the next lemma, we give an alternative expression for F and show that F is well-defined.

We also compute its first variation.

Lemma 4.1. Let f ∈ C2,α
loc (M) satisfy the asymptotics

f(x) = a0

√
1 + r2 − (a1x1 + · · ·+ anxn) +O2,α(|x|1−q).

Then the corresponding functional F :M→ R can be expressed as

F(γ) =

∫
M

[Lg(e)− (R(γ) + n(n− 1))] f dµg −
∫
M
e · L∗gf dµg(4.6)

where e = γ − b. Thus, the linearization DF|g : C2,α
−q → R at g is given by

DF|g(h) = −
∫
M
h · L∗gf dµg.

Proof. In the following computations, we recall the formulas for Lg and L∗g in (3.1) and (3.2).
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By Definition 2.6 and Remark 2.7, we have

F(γ) = lim
r→∞

∫
Sr

(
f (div e− d(tr e)) (ν) + (tr e) df(ν)− e(∇f, ν)

)
dσg −

∫
M

(
R(γ) + n(n− 1)

)
f dµg

=

∫
M

div [f (div e− d(tr e)) + (tr e) df − e(∇f, ·)] dµg −
∫
M

(
R(γ) + n(n− 1)

)
f dµg

=

∫
M

[div div e−∆(tr e)−R(γ)− n(n− 1)] f dµg −
∫
M

(
− (∆f)g +∇2f

)
· e dµg

=

∫
M

[Lg(e)− (R(γ) + n(n− 1))] f dµg −
∫
M

(
− (∆f)g +∇2f − fRicg

)
· e dµg.

Note (4.4) and R(γ) +n(n−1) = Lg(e) +O(|∇γ|2 + |∇b|2) = Lg(e) +O(r−2q) by Taylor expansion.

Both integrals converge by routine computations. �

So far, we have considered the functional F defined by an arbitrary function f satisfying the

asymptotics (4.2). In what follows, we will choose specifically f which is an eigenfunction ∆f = nf .

Lemma 4.2 ([15, Lemma 3.3]). Let (M, g) be an asymptotically hyperbolic manifold. There are

functions f0, f1, . . . , fn ∈ C2,α
loc (M) satisfying ∆f0 = nf0 and ∆fi = nfi for i = 1, . . . , n with the

asymptotics

f0(x) =
√

1 + r2 +O2,α(r1−q)

fi(x) = xi +O2,α(r1−q).

Proof. Taking the trace of equations in (4.3) yields

∆
√

1 + r2 = n
√

1 + r2 +O0,α(r1−q)

∆xi = nxi +O0,α(r1−q).

Note that the operator ∆ − n : C2,α
1−q → C0,α

1−q is an isomorphism by Lemma 2.11. There is a

unique v ∈ C2,α
1−q that solves ∆v − nv = −∆

√
1 + r2 + n

√
1 + r2. We set f0 =

√
1 + r2 + v. Other

eigenfunctions fi are obtained similarly. �

Theorem 4.3. Let (M, g) be an asymptotically hyperbolic manifold with scalar curvature Rg ≥
−n(n − 1) and with the equality p0 =

√
p2

1 + · · ·+ p2
n, where (p0, p1, . . . , pn) is the mass of g.

Suppose the following holds:

(?) There is an open neighborhood M of g in B such that for any γ ∈ M with R(γ) = Rg, the

inequality p0(γ) ≥
√

(p1(γ))2 + · · ·+ (pn(γ))2 holds.

Then (M, g) is static with a static potential f > 0 satisfying the asymptotics:

f =

p0

√
1 + r2 − (p1x1 + · · ·+ pnxn) +O2,α(r1−q) if p0 > 0

√
1 + r2 +O2,α(r1−q) if p0 = 0

.(4.7)

Proof. Case: p0 > 0. Let f0, f1, . . . , fn be from Lemma 4.2. Define

f = p0f0 − (p1f1 + · · ·+ pnfn),
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where (p0, p1, . . . , pn) is the mass of g. Note ∆f = nf . Since f > 0 outside a large compact set,

it follows from the maximum principle that f is everywhere positive. We claim that f is a static

potential on M .

Consider the functional F :M→ R defined by (4.5) corresponding to this particular choice of f

with the coefficients ak = pk for all k = 0, 1, . . . , n. Let R :M→ C0,α
−q be the scalar curvature map

that sends γ to the scalar curvature of γ. Define Cg = {γ ∈ M : R(γ) = Rg}. By hypothesis (?),

for γ ∈ Cg, we have

p0(γ) ≥
√(

p1(γ)
)2

+ · · ·+
(
pn(γ)

)2
.

We compute that the functional F achieves a local minimum at g among the constraint set Cg:

F(γ)−F(g) = p0p0(γ)−
(
p1p1(γ) + · · ·+ pnpn(γ)

)
≥ p0p0(γ)−

√
p2

1 + · · ·+ p2
n

√(
p1(γ)

)2
+ · · ·+

(
pn(γ)

)2
= p0

(
p0(γ)−

√
(p1(γ))2 + · · ·+ (pn(γ))2

)
≥ 0

with equalities realized at γ = g.

By Theorem 4, Lg : C2,α
−q → C0,α

−q is surjective, so we can apply the method of Lagrange Multipliers

(see, for example, [11, Theorem C.1]) to obtain λ ∈ (C0,α
−q )∗ that satisfies

DF|g(h) = λ(Lg(h)) for all h ∈ C2,α
−q .

We substitute the left-hand side above by the first variation formula in Lemma 4.1 and get

−
∫
M
h · L∗g(f) dµg = λ(Lg(h)) for all h ∈ C2,α

−q .(4.8)

Considering h ∈ C∞c in the above identity implies that λ, as a distribution, is a weak solution to

−L∗gf = L∗gλ.

By elliptic regularity, λ ∈ C2,α
loc (M) with the duality given by

λ(Lg(h)) =

∫
M
λLg(h) dµg for h ∈ C∞c (M).

Together with (4.8), λ solves L∗gλ = −L∗gf in the classical sense.

We recall L∗gf ∈ C
0,α
1−q. Applying Theorem 3.5 yields that there are numbers d,C > 0 such that

either |λ(x)| ≥ C|x| in a nonempty cone U ⊂ M \ K, or |λ(x)| ≤ C|x|−d in M \ K. Since λ

is a bounded functional on C0,α
−q , the first case does not occur, by the same argument as in the

last paragraph in the proof of Theorem 4. Therefore, we must have |λ(x)| ≤ C|x|−d in M \K; in

particular, λ(x)→ 0 as |x| → ∞. Taking the trace of L∗gλ = −L∗gf gives that

∆λ− nλ = −(∆f − nf) = 0.

We conclude λ is identically zero by the maximum principle. We conclude that f is a static potential.

Case: p0 = 0. We let f = f0 where f0 is from Lemma 4.2. That is, f =
√

1 + r2 +O2,α(r1−q) and

∆f = nf . Note f > 0 by maximum principle. We will show that f satisfies the static equation. Let
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F : M → R be the functional defined by (4.5) corresponding to this particular choice of f with

a0 = 1 and a1 = · · · = an = 0. Specifically,

F(γ) = p0(γ)−
∫
M

(R(γ) + n(n− 1)) f dµg.

Recall Cg defined above. Among the constraint γ ∈ Cg, we have F(γ) − F(g) = p0(γ) − p0(g) ≥ 0

by hypothesis (?) and thus F attains the minimum at γ = g. Now, we can apply the method of the

Lagrange multipliers and argue that f is a static potential as above.

�

We have shown that a metric g that locally minimizes the functional possesses a static potential

with specific asymptotics. To conclude the proof of Theorem 2, we establish static uniqueness and

show isometry to hyperbolic space.

Lemma 4.4. Let (M, g) be an asymptotically hyperbolic manifold that admits a positive static

potential f with the asymptotics (4.7). Then on any large coordinate ball Br, the following identity

holds ∫
Br

f−1|∇2f − fg|2 dµg =

∫
∂Br

(
Ricg + (n− 1)g

)
(∇f, ν) dσg

where | · | is the norm taken with respect to g and ν is the outward unit normal vector on ∂Br.

Proof. The following identity is due to X. Wang [20]. Set S = Ricg+(n−1)g. By the static equation,

S = f−1∇2f − g and S is both trace and divergence free. We compute

f−1|∇2f − fg|2 = f |S|2

= fg(f−1∇2f, S) (S is trace-free)

= g(∇2f, S)

= div(S(∇f)) (S is divergence-free).

The lemma follows by integrating the identity on Br and applying the divergence theorem. �

We are ready to prove Theorem 2. We restate the assumption (?) using the precise Banach spaces

defined earlier in (4.1).

Theorem 2. Let n ≥ 3 and (M, g) an n-dimensional asymptotically hyperbolic manifold with scalar

curvature Rg ≥ −n(n− 1) and with the equality p0 =
√
p2

1 + · · ·+ p2
n, where (p0, p1, . . . , pn) is the

mass of g. Suppose the following holds:

(?) There is an open neighborhood M of g in B such that any γ ∈ M with R(γ) = Rg, the

inequality p0(γ) ≥
√

(p1(γ))2 + · · ·+ (pn(γ))2 holds.

Then (M, g) is isometric to hyperbolic space.

Proof. By Theorem 4.3,M admits a positive static potential f of asymptotics (4.7). Using Lemma 4.4

and Proposition 2.9, in either the case p0 > 0 or p0 = 0, we have the following identity∫
M
f−1|∇2f − fg|2 dµg = lim

r→∞

∫
∂Br

(
Ricg + (n− 1)g

)
(∇̊f, ν0) dσ0 = −n−2

2 H(f) = 0.
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This implies ∇2f = fg, which characterizes hyperbolic space by an elementary argument, which

we present in Proposition 4.5 below.

Alternatively, we could use again that f satisfies the static equation by Theorem 4.3 to see that

g is Einstein with Ricg = −(n − 1)g. Then M is isometric to hyperbolic space by Bishop-Gromov

volume comparison. �

Proposition 4.5. Let (M, g) be asymptotically hyperbolic. If there is a function f ∈ C2
loc(M)

satisfying the following equation on M :

∇2f = fg,(4.9)

then (M, g) is isometric to hyperbolic space.

Proof. If f has at least one critical point, the result is classical (see [18] and also [12, Theorem C]

and [16, Lemma 3.3]).

We now assume that f has no critical point in M , i.e. ∇f is never zero. We compute the covariant

derivatives of ∇2f = fg, at a point with respect to the geodesic normal coordinates:

0 = f;ijk − f;ikj −Rkj`if ` = fkgij − fjgik −Rkj`if `

0 = f(gkmgij − gjmgik)−Rkj`i;mf ` −Rkjmif

0 = fp(gkmgij − gjmgik)−Rkj`i;mpf ` − fRkjpi;m −Rkjmi;pf −Rkjmif;p.

Note our convention for the Riemann curvature tensor is Rkj`i = g(∇∂k∇∂j∂` −∇∂j∇∂k∂`, ∂i). We

rewrite the above identities without the coordinates and obtain, for any vector fields X,Y, Z,W,P ,

R(X,Y,∇f, Z) = g(∇f,X)g(Y,Z)− g(∇f, Y )g(X,Z)

(∇ZR)(X,Y,∇f,W ) = −f
(
R(X,Y, Z,W )− g(X,Z)g(Y,W ) + g(Y, Z)g(X,W )

)
(∇P∇ZR)(X,Y,∇f,W ) = −g(∇f, P )

(
R(X,Y, Z,W )− g(X,Z)g(Y,W ) + g(Y,Z)g(X,W )

)
− f

(
(∇ZR)(X,Y, P,W ) + (∇PR)(X,Y, Z,W )

)
.

(4.10)

Let γ : (−∞,∞) → M be the integral curve of ∇f|∇f | through a point p ∈ M . That is, γ′(t) =
∇f(γ(t))
|∇f |(γ(t)) . A direct computation using (4.9) shows ∇γ′γ′ = 0. Let X,Y be two orthonormal vector

fields perpendicular to γ′ parallel along γ. The sectional curvature K(X∧γ′) = R(X, γ′, γ′, X) = −1

along γ by (4.10). Next, we compute that the sectional curvature K(t) := K(X∧Y ) = R(X,Y, Y,X)

along γ(t). In what follows, we slightly abuse the notation and denote f(t) = f(γ(t)) and |∇f |(t) =

|∇f |(γ(t)). First, we compute

K ′(t) = γ′(R(X,Y, Y,X)) = (∇γ′R)(X,Y, Y,X)

= −(∇YR)(X,Y,X, γ′)− (∇XR)(X,Y, γ′, Y ) (by the second Bianchi identity)

= −2
f(t)

|∇f |(t)
(K(t) + 1)

(4.11)
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where in the last equation we use the second equation in (4.10). Letting P = γ′, Z = Y,W = X in

the third equation in (4.10), we have

γ′
(

(∇YR)(X,Y, γ′, X)
)

=
1

|∇f |

[
−(R(X,Y, Y,X) + 1)− f

(
(∇YR)(X,Y, γ′, X) + (∇γ′R)(X,Y, Y,X)

)]
.

Substituting the ∇R terms using (4.10) and (4.11) yields

d

dt

[
f(t)

|∇f |(t)
(K(t) + 1)

]
=

(
1

|∇f |(t)
− 3

(
f(t)

|∇f |(t)

)2
)

(K(t) + 1).

Expanding the derivative term in the above identity and combining the above equation for K ′(t),

we arrive that either K(t) ≡ −1 or f ′(t) ≡ 1. However, the later case contradicts that f ′′(t) = f(t)

obtained from the equation ∇2f = fg. Varying p, we conclude that the sectional curvature of M

is identically −1, which implies the universal cover of M is hyperbolic space. Together with the

asymptotically hyperbolic assumption, M is isometric to hyperbolic space. �
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2. Lars Andersson and Mattias Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann.

Global Anal. Geom. 16 (1998), no. 1, 1–27. MR 1616570

3. Robert Bartnik, Phase space for the Einstein equations, Comm. Anal. Geom. 13 (2005), no. 5, 845–885.

MR 2216143
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pp. 103–121. MR 2160869

10. , Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyper-
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