FOLIATIONS BY STABLE SPHERES WITH CONSTANT
MEAN CURVATURE FOR ISOLATED SYSTEMS WITH
GENERAL ASYMPTOTICS

LAN-HSUAN HUANG

ABSTRACT. We prove the existence and uniqueness of constant mean
curvature foliations for initial data sets which are asymptotically flat
satisfying the Regge-Teitelboim condition near infinity. It is known
that the (Hamiltonian) center of mass is well-defined for manifolds sat-
isfying this condition. We also show that the foliation is asymptotically
concentric, and its geometric center is the center of mass. The construc-
tion of the foliation generalizes the results of Huisken—Yau, Ye, and
Metzger, where strongly asymptotically flat manifolds and their small
perturbations were studied.

1. INTRODUCTION

Whether a foliation of constant mean curvature surfaces uniquely exists
in an exterior region of an asymptotically flat manifold is a fundamental
problem in general relativity. The significance of this problem is that the
foliation provides an intrinsic geometric structure near infinity, supplies a
definition of the center of mass in general relativity, and has a relation to
quasi-local mass.

Currently, a widely-used definition of asymptotic flat manifolds at infin-
ity is expressed in terms of Cartesian coordinates outside a compact set and
requires suitable decay rates on the data. The definition is convenient for
calculation purposes, but it may obscure interesting geometry [16, p. 697].
In order to understand the canonical structure of asymptotically flat mani-
folds, Yau suggests that the constant mean curvature foliation is a promising
description of asymptotic flat manifolds near infinity. Moreover, once the fo-
liation exists and is unique, one can develop polar coordinates analogous to
the polar coordinates in Euclidean space, and a canonical concept of center
of mass can be defined. Also, the Hawking mass is a quantity introduced to
capture the energy content of the region bounded by a two-surface N which
is defined as follows:

my(N) = (f;'rig (1677—/NH2dcr>.
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Christodoulou and Yau [4] proved that the Hawking mass is non-negative on
a stable surface with constant mean curvature for initial data sets satisfying
the dominant energy condition. Bray [3] showed that the Hawking mass is
monotonically increasing along the isoperimetric constant mean curvature
surfaces and converges to the ADM mass at infinity.

For the existence and uniqueness of constant mean curvature foliation,
some results have been achieved for strongly asymptotically flat manifolds
whose metrics, in some asymptotically flat coordinate chart, are of the form:

2m

gij(x) = (1 + 2 > 8ij + pijs
pij(x) = O(|z]72), 8”py;(z) = O(Jz|~>71°), (1.1)

where m is the ADM mass.

Huisken and Yau [10] proved the existence of constant mean curvature
foliations for strongly asymptotically flat manifolds, if m > 0. They also
showed that the foliation is unique if each leaf is stable, and if it lies outside
a suitable compact set. Using the unique foliation, they defined a geometric
center of the foliation. Corvino and Wu [7] proved that the geometric center
of the foliation is the center of mass if the metric is conformally flat near
infinity. The condition that the metric is conformally flat near infinity is
later removed by the author [9].

Ye [17] used a different approach to prove the existence of the foliation un-
der the same assumption that the metric is strongly asymptotically flat, and
the uniqueness of the foliation under slightly different conditions. A more
general uniqueness result was proven by Qing and Tian [13]. Metzger [12]
generalized the previous results to manifolds whose metrics are small pertur-
bations of strongly asymptotically flat metrics. However, these results have
been limited to asymptotically flat manifolds with special restrictions on the
|z|~!-term of the metrics. Especially, the metric being strongly asymptot-
ically is not coordinate invariant; namely, it no longer has the expression
(1.1) if the metric is written in a boosted coordinate chart. Furthermore,
center of mass is defined for asymptotically flat manifolds satisfying a more
general condition: the Regge—Teitelboim condition (see Definition 1.2) [2,9],
so it is desirable to generalize the previous results to this setting.

In this paper, we show that the foliation exists in the exterior region of
an asymptotically flat manifold satisfying the Regge—Teitelboim condition,
when the ADM mass is strictly positive. We not only remove the condition
on the |x|~!-term of the metrics, but also allow metrics to have the most
general decay rates ¢ > 1/2. Also, we prove that the foliation is unique under
certain assumptions analogous to those in [10,12]. From our construction,
the geometric center of the foliation is equal to the center of mass. To clearly
state the results, we first provide some definitions.

A three-dimensional manifold M with a Riemannian metric g and a sym-
metric (0,2)-tensor K is called an initial data set if g and K satisfy the
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constraint equations
— K3 + (trg(K))* = 16mp,
divy (K — trg(K)g) = 8mJ, (1.2)
where Ry is the scalar curvature of M, try(K) = ¢g" K;;, p is the observed en-
ergy density, and J is the observed momentum density. We use the Einstein

summation convention and sum over repeated indices; though, sometimes
we employ summation symbols for clarity.

Definition 1.1. (M, g, K) is asymptotically flat (AF) at the decay rate q €
(1/2,1] if it is an initial data set, and there exist coordinates {x} outside a
compact set, say Br,, such that
gij(x) = 8ij + Os(|2[™%)  Kyj(x) = Or(j2|179).
Also, p and J satisfy
p(z) =O(x|72720)  J(x) = O(|z|7*7%).

Here, the subscript in the big O notation denotes the order of the deriva-
tives which possess the corresponding decay rates. For example, if f =
Oa(|z[~7), then f € C* and |f(z)| < clz|~% [Df(x)| < x| 7179 [D*f(2)| <
c|z| =279 pointwisely for |z| large, where c is a constant depending only on
g and K.

Remark. The condition on the reqularity of g up to the fifth order of deriva-
tives is used in the proof of uniqueness: Theorem 2 and Theorem 3. For the
existence of the constant mean curvature foliation (Theorem 1), we only need
9ij = 0ij + Oa(|z[ ™).

For AF manifolds, the ADM mass m is defined by

16’7T7’11>I£10/||_TZ gz]z gu,j | ’dO'e, (13)

2¥)

where |z| = />, (x%)?, and do is the induced area form with respect to the
Euclidean metric. The ADM mass is well-defined when the decay rate ¢ is
greater than 1/2 (see [1,5]). Another equivalent definition of ADM mass is

1 1 2
m = —— lim " (Riczj-\f - 2Rggij) (—2;1;Z)|‘jTI doe, (1.4)
T|=r

where Ric™ is the Ricci curvature of g.

Definition 1.2. (M, g, K) is asymptotically flat satisfying the Regge—Teitelboim
condition (AF-RT) at the decay rate q € (1/2,1] if (M, g, K) is asymptoti-
cally flat, and g, K satisfy these asymptotically even/odd conditions

9ij(x) = gij(—x) = Oa(|x|717%)  Kij(@) + Kij(—x) = Or(J2|7>79).
Also, p and J satisfy

p(x) = p(=z) = O(|z[7*729)  J(2) = J(~x) = O(J«|7>727).
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Remark. The RT condition on the data is preserved under coordinate trans-

lations, rotations, and boost.

Assume that (M, g, K) is AF-RT. Then, the center of mass C is defined
by, for « =1, 2, 3,

cr =
167Tm THoo /x|_rzx Giji — gu,])| ‘

2V

T Sleag)e] o

The above notion is well-defined [2,6,9] for AF-RT manifolds. It is noted
that another notion of center of mass analogous to (1.4) has been studied
and proven to be equivalent to C in [9]. For the purpose of this paper, we
use the above definition (1.5).

We denote Sg(C) = {z : |z — C| = R} and v, as the outward unit normal
vector on Sg(C) with respect to g. If v € C?*%(Sg(C)), then ¥*(y) =
Y(Ry +C) and o* € C%(S1(0)). (1*)°¥ denotes ¢*(y) — ¢*(—y). For the
definitions of strictly stable and stable, please refer to Definition 3.6. Also,
throughout this article, ¢ and ¢; denote constants independent of R.

Our main theorems are the following:

Theorem 1. Assume that (M, g, K) is AF-RT at the decay rate q € (1/2,1].
If m # 0, then there exist surfaces {X g} with constant mean curvature Hs,
in the exterior region of M, and Hy, = (2/R) + O(R™179). Moreover, g
is a coR'~-graph over Si(C), i.e.

Yk = {z 4+ vo(2)vy : tho € C**(Sr(C))}
with
5l cza(s; o) < coR'79, and  ||(¥5)°™ | c2.a (s, o)) < coR ™Y

Therefore, the geometric center of {3gr} is the center of mass C.
Additionally, if m > 0, then each g is strictly stable, and {¥gr} form a
foliation.

For one single surface N, we have the following uniqueness result where
the minimal radius is denoted by r = min{|z| : z € N}.

Theorem 2. Assume that (M, g, K) is AF-RT at the decay rate g € (1/2,1]
and m > 0. Then there exists o1 so that if N has the following properties:
(1) N is topologically a sphere,
(2) N has constant mean curvature H = Hy,, for some R > o071,
(8) N is stable,
5—¢

r > H™? for some a satisfying ———— < a <1,
(4) r > f fy 9907g <5

then N = Xg.
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Notice that the topological condition (1) is used in Lemma 4.4. In Theo-
rem 2, we do not assume that IV is a leaf of the foliation. Thus, in the region
M\ Bp-4(0), Xg is the only stable surface with constant mean curvature
Hy,,. In particular, {¥g} is the only foliation by stable surfaces of constant
mean curvature so that each leaf with mean curvature H lies in the region
M\ Bg-a(0). It is noted that when the decay rate ¢ = 1, a > 2/3, which is
exactly the restriction imposed in [12] to derive the a priori estimates, but
the radius H ™% increases as g approaches to 1/2. If we replace the condition
on r by the condition that r and the maximal radius 7 = max{|z| : z € N}
are comparable, we derive a uniqueness result which holds outside a fized
compact set.

Theorem 3. Assume that (M, g, K) is AF-RT at the decay rate g € (1/2,1]
and m > 0. There exist oo and co so that if N has the following properties:
(1) N is topologically a sphere,
(2) N has constant mean curvature H = Hy,, for some R > o9,
(8) N is stable,
5—¢

7 < eo(r)Y for some a satisfyin ——<a<l,
(4) T < ea(r)V? f fy 9901g <5

then N = XR.

An ingredient used in Section 2 (Lemma 2.1) and hence in Theorem 1 is
the density theorem for (M, g, K) satisfying the AF-RT condition. Denote
the momentum tensor m = K — (tryK)g below and denote the modified Lie
derivative, for any metric g,

Ly X = Lxg—divg(X)g,
where Lxg is the Lie derivative.

Definition 1.3. (M, g, ) is said to have harmonic asymptotics if (M, g, )
is asymptotically flat and

g=u's, m=u*Ls;X) (1.6)
outside a compact set for some function u and vector field X tending to 1
and 0 at infinity respectively.
Definition 1.4. We denote W]ff(M) the weighted Sobolev spaces. We say
that f € Wf’f(M), if f e VV;Z?(M) and, in addition, when p < oo,

p —
1f llwsr ary = / > (}Daf\plalﬂ) p~dvoly | < oo,
M
| <k
where « is a multi-index and p is a continuous function with p = |x| on

M \ Bg,; when p = oo,

HfHnyoo(M) = Z esssup]Daf‘leJrq < 00.
' o<k M
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Theorem 4 (Density Theorem [9]). Assume that (M,g,K) is AF-RT at
the decay rate ¢ € (1/2,1). Then, there is a sequence of data (G, Tr) of
harmonic asymptotics satisfying (1.2) (with the same p and J) such that:
Given any € > 0 and qo € (0,q), there exist R and kg = ko(R) so that, for
any p > 3/2, (G, Tk) is within an e-neighborhood of (g, ) in Wz’qp(M) X

Wi’ffq(M) and

IN

195 (@) = ge (=) lw2p  anpey <&

Hﬁk(az) + ﬁk(_x)Hng’lqo(M\BR) <, for all k > k.
Moreover, mass, linear momentum, center of mass, angular momentum of
(Gr, k) are within € of those of (g, ).

Remark. The density theorem stated in [9] is for vacuum initial data, i.e.
p =0 and J = 0. A slight modification of the proof generalizes to the cur-
rent situation. Also, notice that as in [9], the theorem holds more generally
for (g,m) satisfying weaker regularity (in weighted Sobolev spaces). Here,
we only need the version that (g, m) satisfies the pointwise regularity at the
suitable decay rates defined by Definition 1.2.

The article is organized as follows. In Section 2, an important identity
relating the mean curvature to center of mass (2.2) is derived using the den-
sity theorem. In Section 3, we prove the existence of the foliation (Theorem
3.1 and Theorem 3.9) and show its geometric center is equal to the center
of mass (Corollary 3.4). In Section 4, Theorem 2 and Theorem 3 are proven
after certain a priori estimates are established.

2. ESTIMATES ON SURFACES CLOSE TO EUCLIDEAN SPHERES

This section contains three technical lemmas. Throughout this section,
we assume that (M, g, K) is AF-RT at the decay rate ¢ € (1/2,1]. Denote
Sr(p) :={z: |z —p| = R}. We can view Sr(p) as a submanifold in M with
respect to either the physical metric g or the Euclidean metric g.. Because g
is asymptotic to Euclidean metric near infinity, the induced metric on Sg(p)
is close to the standard spherical metric, for R large. Hence, the geometric
quantities on Sg(p) are close to those on the standard sphere, up to the
error terms. In order to construct constant mean curvature surfaces, we
need to compute explicitly the leading order terms in the error terms and
also estimate the rest of the terms.

In the first lemma, the mean curvature of Sg(p) with respect to g is
derived. Its mean curvature after integration with x® — p® gives the differ-
ence of p and center of mass C. The estimates on the second fundamental
form, Laplacian, and Ric(vy, v4) on Sr(p) are obtained in the second lemma.
The analogous estimates for surfaces close to Sg(p) are derived in the third
lemma.
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If f is a function defined on Sg(p), we define f°%(x) = f(x) — f(—x+2p)
and f"(z) = f(z)+ f(—x+2p), where x and —z + 2p are antipodal points
on Sgr(p). Also, hi; denotes g;; — ;5.

Lemma 2.1. Let Hg be the mean curvature of Sr(p) and do. be the area
form of the standard spherical metric. Then

2t — oV (2d — IV (2F — pF
x) :% 4 lzhij,k@?)( b )( pj)( b )

RS
i7j7k

—|—2Zh”(l‘ ZL‘ _p Zh”’ p]
1,7
1 J_
+2%:hiz‘,j($)m 7

where Eo([,[j) = O(R—l—Qq) and Egdd(l’) — O(R_Q_Qq),
Fora=1,2,3,

/sm =) <HS B ;> do, = Sam(p® — C%) + O(R"2).  (2.2)

Eo(x), (2.1)

Proof. Let V be the covariant derivative of g.
H S = divgl/g,

where v, is the outward unit normal vector field on Sg(p) with respect to g

and
L - Viz—p|
! Viz =l

Computing directly, we have

ko k
= hkl(iv)u% + E(2), (2.3)

where E(x) = O(R™24) and E®*"(z) = O(R~1729). Then a straightforward
computation gives (2.1).

To prove (2.2), we let f(z) = Hs — 2/R. First we notice that the leading
order term of f(x) is even and vanishes after integration with the odd func-
tion z¢ — p®. Moreover, the error term Ej after integration with (z — p®)
is of lower order O(R!=24). We define, for o = 1,2, 3,

2t — i (d — IV (F — pk
_’Za(R):/S ()(ma_pa) ;th,k(w)( p)( J pj)( p) dO’e.

R3
/[:7j7k
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Because the asymptotically flat coordinates are not globally defined in the
interior, we use the Euclidean divergence theorem in the annulus A = {R <
[z —p| < Ru}:

Ty (Ry) — /Z{wk (27 — pI)(aF — pk)(z> — p* ] da

v —pP?

= fy st [
Sy IELELE L
-3 St [FHHERE]

Using integration by parts and simplifying the expression, we obtain an
identity containing purely the boundary terms

Zy(R) — I (R) = By (R1) — By (R)  for all Ry > R, (2.4)
where B{'(R) equals the boundary integral:
« « 1 xj_pj (xi_pi)(wj_pj)
/ (z* —p )Z [thj,i(x)R — 2hy;(x) o3 do.
Sr(p) i,

1 % — p® ' —p
+/ — [h”(x) =+ hm(m)i doe.
Sr(p) 2 Z R R

)

Claim: Z0'(R) = BS(R).

Proof. First notice that if § = u*d outside a compact set, then by direct
computation and (2.4), for any Ry large (so that § = u*d outside Bg, (p)),

T9(R) — B2(R) = T¢(R1) — BS(R1) =0 for a = 1,2,3.

To prove the identity for general metrics, we apply Theorem 4 and would
like to show that, given ¢y > 0, there exists g so that, for some Ry,

T3(B) — By(R)| < [Z3(R) ~ BY(R)| +eo=e0.  (25)
We denote symbolically

/S 1Dl =i de = |[550) B3] - [Z50) - B 0]

Then by Holder’s inequality,

2R
[ [ 1Dt =l doudr < Clo.a.0)lo = Glhyrsgan B
R Sr(p) —q
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That means, for a.e. r € (R,2R), say r = Ry, that
/ |D(g = 9)|Rydoe < C(g,a.p)llg = Glly2r ) B>
Sk, (p) -1

Given € = ¢y/(C(g, q,p)R39), there exists g so that ||g — §||W2,p(M) < e by
Theorem 4. Hence !

/ D(g — )| Ry do. < o,
Sk, (p

and then (2.5) holds. Because ¢ is arbitrary, we prove the claim. O

Then, substituting Z¢'(R) by By (R) into (2.1) and (2.2), and simplifying
the expression, we have

2
(x% — p%) (H - > do.
/SR(p) R

1 / al —pl
=-3 (@ = p%) > _(hiji — hiij) —%— doe
2 | Jsrw) % ! ! R

o

Hfi _ pi & — pa
— hia——— — hi; > doe
/SR(p) Z < R R

(2

+ O(R'729),

Using the definitions of the ADM mass (1.3) and center of mass (1.5), we
derive (2.2).
(]

In the following lemmas, ¢ denotes a constant independent of R. Also, we
denote f* to be the pullback of f defined by f*(y) = f(Ry + p), so f* is a
function on S;(0). Also, define

(f)°M =) = f*(=y),  (F" = )+ F(—y).
Lemma 2.2. Let Ag be the second fundamental form on (Sr(p), gs) where
gs is the induced metric on Sr(p) from g, Ag be the Laplacian on (Sg(p), gs),

and vy be the outward unit normal vector. Let AG be the standard spherical
Laplacian on Sr(p). Then

. 2
(i) |As]> = o2
(i¢) For any f € 02’Q(SR(p))a

Asf=ASf + By, where |Ea| < cR™Z7 f*||c2(sy 0y

and | B8] < ¢ (B9 cxqsuop + B2 ey
(iii) RicM(vy,vy) = B3, where |E3] < cR™27% and |E$Y| < cR™374,

+ E1, where |Ey| < cR™*9 and |E9%| < ¢cR7374,

Proof. Let {u1,us} be local coordinates on Sg(p) and V be the covariant
derivative of (M, g). In the rest of the section, we temporarily denote g, =



10 LAN-HSUAN HUANG

g (0, 0p) for a,b € {1,2,3} where 9, = 8 ifa € {1,2} and 03 = v, (instead
of the original meaning of {g;;} on the asymptotlcally flat coordinates in
Definition 1.1). Therefore, the second fundamental form Ag is

(A5)ap = g (v . 8,vg) — 13, (2.6)

Juq aub

Because g is asymptotically flat, g(z) = g. + h and h = O(|z|~%). Locally,
we have

1 0
I_‘ab - 5 (gaS,b + 9b3,0 — gab,S) = Ye (V(;é:auba V6> + |hah| + |ah‘a (27)

where we denote the difference of F3b and g.(V¢ o au , Ve) symbolically by

|hOh|+|0h|, where V€ is the covariant derivative and the Christoffel symbols
of (M \ Bg,, ge) and 0 denotes the derivative in either tangential or normal
directions on Sg(p).

Remark. More precisely, writing f = |0h| symbolically means
[FI < clohl,  [fn] < el(@h)n], |24 < c|(9h)™*).

The constant c is independent of R. Notice that the derivatives in the tan-
gential and normal directions do not affect the asymptotic even/odd prop-
erty, but only improve the decay rate. For example, if h = O(|z|™) and
hodd = O(|xz|~'179). Then Oh = O(|z|~'79) and Oh is still asymptotically
even at the decay rate (0h)°% = O(|z|=279). In the following arguments, we
will use similar notations to bound lower order terms for simplicity.

The second fundamental forms are
(Ag)ap = (A%) gy + [hOR| + |Oh|.

Therefore, if the principal curvature of (Sg(p), gs) are denoted by (\g);, the
above identity says:

1
()\5)1' = R + |h8h| + ]8h|, (2.8)

where 1/R is the principal curvature of the spheres in Euclidean space. Then

2
AP = )t + (s = o5
We could conclude (i) by analyzing the error terms on the right hand side
and by using the AF-RT condition.

Using g = ge + h, the Laplacian in the local coordinates is
0 0
A — -1 Y iy 2
Sf \/'5 3u1 <\/§g 8uj >
= ASS + (|hl10gllof| + |h][6% £ + |Onl|0f]) - (2.9)

By the definition of f*, |0f(x)| = R~'|0f*(y)| and |0 f(z)| = R™2|0%f*(y)|,
and then (ii) follows.

1
R(|h8h\ + |Oh|) + (|hOR| + |Oh|)>.
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For (iii), notice that Ric™ (vy,v,) = |D?g|, where Dg denotes the usual
derivatives of g in {8%2_} directions as in Definition 1.1. Therefore, |D?g| =

O (|z|7277) and ’(DQg)Odd’ = |D2 (gOdd)‘ = O(|z|=379). O

In the following lemma, we generalize the above results and prove that
similar estimates also hold for surfaces which are cR'~%-graphs over Sg(p)
for some constant ¢ (recall ¢ € (1/2,1], the decay rate of the AF metrics).
Notice that when R is large, the unit normal vector v, is close to the Eu-
clidean normal vector, so the normal graphs over Sg(p) are well-defined.

Let N be a normal graph over Sr(p) defined by

N ={U(z) =2+, : ¢ € C*(Sr(p))}.
For any f € C2(N), we let f(z) := f(¥(x)) and f* := (f)*, the pull-back
function defined on S1(0). Let p4 be the outward unit normal vector field
on N, Ayx be the second fundamental form, and Ay be the Laplacian on
(N, gn), where gy is the induced metric on N by g.

Lemma 2.3. Assume that

9% lc2 (s, 0y) < ¢R'™7 and ||(*)°™| (s, (0)) < R (2.10)
Then
2
(i) |An|* = 2 + B} where |Ey| < cR™277 and |(F})°%| < cR7379,

(i) For f € C*(N), (Anf)(¥(x)) = A%f(z) + E,
where |Ej| < CR*Z*qu*HCz(SI(O)) and

(B < e (R0 Plleags, oy + B0 ez, op)

(iti)  (Ric" (1g, pg)) (¥(z)) = Ej
where |ES| < cR™279 and |(E})°%| < cR™374.

Proof. Similarly as in the proof of Lemma 2.2, let {u1,us} be local coordi-
nates on an open set U of z € Sg(p). Moreover, without loss of generality,
we assume {8%17 aiw, vg} are orthonormal at x with respect to the metric g.
Let {v1,v2} be the corresponding local coordinates on V = ¥(U) C N and
g be the outward unit normal vector field on N with respect to g. Because

M is AF, up to lower order terms, we have

0o _29 ol

67111- = 8’&1 + (AS)U¢6UJ‘ + 8’&1 Vg (211)
oY 0

pg =g+ PHsvg — af‘ o (2.12)

i=1,2
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where we parallel transport {8%1, 8%2, ,ug} to x along the unique geodesic

connecting = and ¥(zx). In this proof, we denote
Gab = 9(€a; €p) where €, = 8%& if a € {1,2} and €3 = pg,

Jab = g(€q, €p) where e, = % if a € {1,2} and e3 = v,

where g4 is defined the same as in the proof of the previous lemma. By
(2.11) and (2.12), we have for i € {1,2},a,b € {1,2,3}
Gia =9ia + [¥[|Asllg] + 10¢]|g|
Giap =Yiab 1+ |0V[|Aslg| + [¥][0As]|g] + [4]|Al|Og]
+[0%9|g] + 09 [*|g]. (2.13)

To prove (i), notice that

0 =3
(AN)ij =9 (V 0 871)] »Mg) = =Ty

Ov;

and
5 1

Lop =35 (§a3,b + 9v3,0 — gab,3)

0
0Vt )

+ 00|l Asllgl + [v]10Aslgl + [¢]| As|[9g] + [0*9]]g] + 09]?|9g].

Therefore, by (2.8) and the previous two identities, we get

1
x| =[As® + % (10¢] As|g| + [¢]|0As]|g]
+[[|Al|g| + (0% |g] + |9v]?|dg]) -

Above, the terms of the weakest decay rate in the error terms are, for in-
stance,

1 o
510%¢llgl = O(R™71).

Similarly, we could compute (E})°% and use Lemma 2.2(i) to conclude (i).
Moreover, we can derive from the above two identities to conclude that the
trace-free second fundamental form is

|An| = O(R™'79), (2.14)
and the mean curvature of N is

Hy = = +O(R™79). (2.15)

2
R
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For (ii), the Laplacian in local coordinates is

(AN f)(Y(x)) :\@laii (ﬁgij(;?)jf(\ﬂ(x))>

P 9
V5 (\/ag”%ﬂw))) + 10l Asllgllo]

+ [¥110Asl|gllof| + ]| Asllgllogllof] + [¢]|As|lgl|o° f].
Then

(Anf)(¥(x)) = Asf(z) + [0¢]|As||g]|0f]
+0|0Asg10F] + ]| Asllgl|0gl|0f] + v As|g]|6*f].

where the terms at the weakest decay rate of the error terms are, for instance,
0¢]|As||gl|of ()| < R0l Asllgllof*(z)] < CR™>7) f* || 2.

Then, (ii) follows from Lemma 2.2 (ii).
Using Lemma 2.2(iii) and the identity

Ric™ (ng, pg) (¥(x)) = Ric™ (vg, vg) + |D?g|[¢]| As| + [ D?gl|00],

we can conclude (iii).

3. EXISTENCE OF THE FOLIATION

In this section, we prove the existence of the foliation of constant mean
curvature surfaces, assuming the ADM mass m > 0. An idea similar to [17]
is employed in which normal perturbations of Euclidean spheres are consid-
ered. However, our construction is more subtle because we have to perturb
a Euclidean sphere Sgr(p) twice to construct a constant mean curvature sur-
face. Roughly speaking, the first perturbation is of the order O(R'~%) and
the second one is of the order O(R!~29). Geometrically, it reflects the fact
that, under weaker asymptotics, constant mean curvature surfaces are too
far away from some Sgr(p) to apply the implicit function theorem directly.
Therefore, we have to construct a family of approzimate spheres S(p, R) from
Sr(p) using a PDE construction. Then by carefully choosing the center p,
we find the nearby constant mean curvature surfaces from S(p, R).

While we only require m # 0 in proving Theorem 3.1, assuming m > 0
is used to prove the stability of the surfaces and then to show that they
form a foliation. From our construction, each leaf of the foliation is a graph
over the Euclidean sphere centered at some p = p(R). We also show that p
converges to the center of mass C as R — oo.

Throughout this section, ¢ = ¢(«, g,0g) or ¢; = ¢;(a, g,0g) denote con-
stants independent of R. Recall that if v € C?%(Sgr(p)), then ¥*(y) =
Y(Ry + p) and * € C%(51(0)), and define

(W) =9 (y) = (), (W) =9 (y) + U (~y).
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The first theorem states the existence of a surface with the given constant
mean curvature.

Theorem 3.1. Assume that (M,g,K) is AF-RT with ¢ € (1/2,1] and
m # 0. There exist constants og and cy so that, for all R > o¢, there is X
with constant mean curvature

2
HZR — E + O(R_l_q).

Y g is a coR'™-graph over Sgr(p), i.e.

S = {z +ovy : o € C**(Sr(p))}
and g satisfies

5]l czagsi ) < coR'79, and  [|[(45)°" | czas, ) < coR™L (3.1

Because the mean curvature of Sg(p) is equal to 2/R up to O(R™179)-
terms (2.1), we would like to construct a constant mean curvature surface
by perturbing Sg(p) in the normal direction. However, in contrast to the
case that (M, g) is strongly asymptotically flat, the mean curvature of Sg(p)
is not close to some constant enough to apply the implicit function theorem.
Therefore, we first construct the unique approximate spheres S(p, R) as-
sociated to Sr(p) whose mean curvature is closer to some constant up to
O(R~'729)-terms.

Recall that f denotes Hg — 2/ R, and Hg is the mean curvature of Sg(p).

Lemma 3.2. There exists ¢ independent of R so that, for R large, there is
an approximate sphere

S(p,R) = {z + ¢(x)vy : o € C**(Sr(p))},
where ¢ satisfies
16" [[c2a(sy o)) < R 1(6%)°™| 2o (s, (o)) < cR™% (3.2)

Moreover, the mean curvature of S(p, R) is

92
Hs= g+ [+ O(R™1729), (3.3)
where f := (4nR?)~! fSR(p) f doe.
Remark. When q =1, ¢ is bounded by a constant. However, when q < 1,
the size of ¢ may increase as R increases.

Proof. Ly = —AG — 2/R? denotes the linearized mean curvature operator
on the standard sphere Sg(p) in Euclidean space , where A§ is the standard
spherical Laplacian. It is known that because mean curvature is preserved
by translations in the Euclidean space, Ly has the kernel

& = span{z' —p',2* —p*, 2* — p*}.
Also notice that, by the self-adjointness of Lo, the L? orthogonal complement
&+ = RangeLy.



Foliations by Stable Spheres with Constant Mean Curvature 15

Let Lo : C%(Sg(p)) — C%*(Sgr(p)). Consider

Lop=f—R274Y Ala'—p')~ F. (3.4)
We choose the constants A’ to satisfy
.3 . ,
A= PR () ) do (35)
Am Sr(p)

so the right hand side of (3.4) is in RangeLy and then (3.4) is solvable.
Notice that because of the AF-RT condition, A = O(1). We let ¢ be the
unique solution in &' to the equation (3.4).

To estimate ¢*, note that it satisfies

(—Ap —2)¢" = R*(f*(y) — R >4 Z Ayt =),

where Ag is the standard spherical Laplacian of the unit sphere in Euclidean
space. Because ¢* € (Ker(—Ag—2))*, by the Schauder estimate and because
f=1|Dh| = O(R~171),

16" lo2a (s, (0)) < ellR2f*(y) = B9 Ay — R*fllco.as, o)) < cR'

Moreover, (¢*)°% satisfies the following equation

(*Ao - 2)(¢*)odd — R2(f*)odd —_9R™4 ZAzyz

Then, because (¢*)°% € (Ker(—Ag — 2))*, by the Schauder estimates and
the fact that f is asymptotically even with % = O(R~279), we have

1(6")° | c2.a sy 0y) < cllRZ(F)°M = R Ay co.a(sy (o)) < cR7% (3.6)

Then we define
S(p, R) = {z + ¢vy}.

In particular, S(p, R) is a graph over Sgr(p) which satisfies the conditions
for N in Lemma 2.3.

We compute the mean curvature of S(p, R). Denoting Hg the mean
curvature map

Hg : C**(Sp(p)) — C**(Sr(p))

which maps a function ¢ to the mean curvature of the normal graph of ¢
over Sp(p). Then the mean curvature of S(p, R) is Hs(¢). By Taylor’s
Theorem,

1
Hs(¢) = Hs(0) — Lso + /O (dHs (s6) — dHs(0)) ¢ ds,

where dHg is the first Fréchet derivative in the ¢-component, and Lg is the
linearized mean curvature operator on Sg(p) defined by

Ls = —Ag — |Ag|* = Ric" (v, ),
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where Ag, Ag, and Ric™ (v,,v,) are defined by Lemma 2.2. The integral
term above can be bounded by sup¢ ‘dQHS(S(b)gbd)‘ by the mean value
inequality, and

82

—Hg(t
52 s(to) _

The left hand side is the second Fréchet derivative and the right hand side
is the second derivative of the mean curvature of the surface

Ny :=={z + sd(z)vy : y € Sr(p)}.

For R large, the unit outward normal vector field on Nj is close to v, and
a straightforward calculation gives us

82
(00| <e (1Rl |A.I 168 + 14w, |00 + L Ax, ol]0%] + |x. " oF)

ot?
<cR*)16* (1225, (0))- (3.7)

In the last inequality, we use that |R;jn| = O(R™279) and |An,| = O(R™!)
from Lemma 2.3.

Noticing that Hg(0) is the mean curvature of Sgr(p), so, by Lemma 2.1,
we have

d*Hg(s¢) ¢ =

1
H5(0) = 5 + (@) = Lo+ (Lo = Ls)o+ [ (alls (s0) — dH5(0) ¢

By (3.4),

Ho(@) = =+ F+ R340 Aia’ —pi) + By, (3.8)

=y

where
1
Ey=(Lo— Lg)¢ +/0 (dHg (s¢) — dHg(0)) ¢ ds.

By Lemma 2.2, (3.2), and (3.7), the error term Ej is bounded by
1B llcoa <c(R7¢" g2 + R0 (|G2n) < cRITH
1B coa <c (R_l_qllsb*llcza + R7[(6)°™| oo
FR26 B+ B (6 cne 6l
<cR™21, (3.9)
Therefore, we derive (3.3). O

Proof of Theorem 3.1. To construct a surface ¥ p with constant mean curva-
ture, we consider the normal perturbations on S(p, R) := {¥(z) = 2+ ¢v,}.
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We denote the mean curvature of the normal graph ¢ over S(p, R) by Hs(1)).
By Taylor’s Theorem, for any ¢ € C%%(S(p, R)),

Hs(¢) =Hs(0) + Ast + (|As[* + Ric™ (g, 11g)) ¢
1
+ [ @s(sv) — anis(0) v, (3.10)

where Ag, As, and p4 are defined as in Lemma 2.3 for which we let N =

S(p,R), and ¢ and 1* denote the pull-back functions on Sg(p) and S1(0)
respectively. By (3.8) and (3.10), solving

2 _
Hs(y) =4+ f (3.11)
is equivalent to solving 1 to the following equation:

0=R™" qZAZ P )+ Byt Ast+ (|As]? + RicY (g, p1g)) ¥

1
+ [ ts(sv) ~ aHs(0) v ds.
0
That is, to solve
Lo = R0 Al(a’ —p') + By + B, (3.12)
where
Es(x) =(Ast) o W(x) — Agd

+ (14sPV) = g + (R (g ) 0 ¥(2) ) 7

+ (dHs(s0) — dHs(0)) ¥] 0 ¥() ds.

Using Lemma 2.3 and (3.7), we have
IBS o <e (B¢ lcza + R 200)
1B o <e (B2 onen + R | (17)|

2«

PR B + R0 me || (67)]

We pull back (3.12) on S;(0),

CM) . (3.13)

(—Ag —2)p* = R? (R—Q—q > A+ Ef + E5) =: F(p,R,¢").  (3.14)

If ||Y*||c2.e < 1, then by (3.9) and (3.13),
1 E(p, R, ") co.e (51(0)) = cRY™,
I(F (p, R, )" | co.e(sy o)) < eR7? (3.15)
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In order to find a solution ¥* to the above equation, a necessary condition
is that F(p, R, ™) lies inside Range(—Ay — 2). Using m # 0, we show this

can be achieved by correctly choosing p = p(R,v*). By the definition of A’
(3.5), we have

/ Y R F(p. R, ) do
S1(0)

:/ Y <RQ‘1 Z Ayt + Ef + ng) do.
51(0) i

_ / Y S () doe + / y* (B} + E2) do
S1(0) S51(0)

:/ rp f(m)R_Qdae—l—/ y* (E; + E2) do.. (3.16)
Seip) I 51(0)

Using (2.2) in Lemma 2.1, the first integral is equal to
gmm (p© — CY) R™3 + O(R™2729).
Therefore, because m # 0, we can choose
) =0 = I [ e ) do O, (317)
8mm Js,(0)
such that (3.16) is zero; that is,
F(p(R,v), R, ") € Range(—Ag — 2).

To complete the proof, we apply the Schauder fixed point theorem. Al-
though F(p(R,v*), R,1¢™*) contains also the second order derivatives of *
from the error term FEs, those second derivatives are quasi-linear and have
small coefficients. We can rewrite (3.14) as, for R large,

(_AO - 2)¢* + aij(xa ¢*)812]¢* = F(p(Rv w*)7 R7 w*)7
where a;; = O(R™9) if |[¢*||co < 1. Therefore,
Ly* = (=Ao = 2)¥" + ayj(y, ") 050"
is a quasi-linear elliptic operator for R large.

Define B = C27Q(Sl(0))ﬂ{v . H/UHC2,O£(5'1(O)) S 1}. LetT : B — 02’01(51(0))
be T'(v) = u where u is the unique solution in (KerL)* to the linear equation

(=A0 = 2)u + ay(y, v)05u = F(p(R,v), R,v).
By the Schauder estimates and (3.15),
ullcz.a (s, 0)) < CllFllcoa(s, o)) < R

For R large enough, the right hand side is less than 1, so T is a map from B to
itself. It is easy to check that T is compact and continuous by the standard
linear theory. Therefore, the Schauder fixed point theorem applies, and
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there is a fixed point ¢* to (3.14). Using the Schauder estimates and (3.14)
tO (w*)odd’
Lo(w*)odd — Fodd'

Therefore,
. 1 _
1™ lo2.e 51 0)) < 50031 %,
*)\ O O 1 —
(%) o251 (0y) < €l F™ | cowa sy o)) < SCR. (3.18)

By letting 1(z) = 1* (%58), ¢ is a solution to the identity (3.12). We

let ¢ (¥(x)) = 9(x), then the graph of ¥ over S(p, R) has constant mean

curvature (2/R) + f. Because pg4 is close to v4 by (2.12), we can rearrange
and write X i as a graph over Sgr(p)

Sk = {z+Yovy : o € C**(Sg(p))}.
Because ¥ = ¢ + 1 + O(R™9), by (3.2) and (3.18), we derive (3.1). O

In [10], the geometric center of a constant mean curvature foliation is
defined:

Definition 3.3. Let {Xgr} be the family of surfaces constructed in the pre-
vious theorem and X be the position vector. The geometric center of mass

of (M, g, K) is defined by, for a =1,2,3,
N ‘ fER X%do,
Gy = o,

From our construction, we not only prove that the geometric center con-
verges, but we also show that it is equal to center of mass C. The following
corollary generalizes the results in [7,9].

Corollary 3.4. Assume (M, g, K) is AF-RT at the decay rate q € (1/2,1]
and m # 0. Then Cgy converges and is equal to C.

Proof. Let @ be the diffeomorphism from Sgr(p) to X defined by ®(z) =
x + Yovg. Then by the definition and the area formula,

Js, X doe :fSR(p) (2% + thov) J® doe
fER doe fSR(p) J® do,
fSR(p) O(R'~?%) do
+ d .
fSR(p) Te

(67

In the second identity, we use (3.1) and J® = 1+ O(R™9), so the second
term in the last line is of lower order and vanishes after taking limits. We
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only need to study the limit of p. By (3.17), we estimate the error terms E}
and E¥ in (3.17). By the asymptotically even/odd properties of E} in (3.9),

/ y~ EZ do| <
S1(0)

/ ya(EI)Odd dde
51(0)

S/ (I‘ - P )(E4)OddR_2dO'6
Sr(p)

R

<cR™? sup ‘(E4)Odd < cR™*%,
Sr(p)

Similarly, by (3.13) and (3.18),

/ y*EZ doe
S1(0)

From (3.17), we derive

<cR™? sup ‘Egdd < R, (3.19)
Sr(p)

p* =C*+ O(R'™%9).
After taking limits, we prove the corollary. O

Because p is asymptotic to C, we can rearrange X i to be graphs over

Sr(C).

Corollary 3.5. The constant mean curvature surfaces Xr constructed in
Theorem 3.1 are coR'~9-graph over Sg(C), i.e.

Sk = {z+vovy : Yo € C**(Sg(C))},
and g satisfies
5]l cza(si o) < R, 11(W5)°™ | cza (s o)) < coR 79

After constructing the family of surfaces with constant mean curvature
{XRr}, we prove that they form a smooth foliation. We first estimate the
eigenvalues of the linearized mean curvature operator.

Definition 3.6. A smooth hypersurface N in M is called stable if the lin-
earized mean curvature operator

Ly = —An — (JAN + Ric™ (ug, 1g))

has the lowest eigenvalue g > 0 among functions with zero mean value, i.e.

o = inf {/ uLyudo : ||lullr2v) = 1,/ udo =0, and u # O} > 0.
N N
(3.20)
If pg s strictly positive, N is called strictly stable.

Remark. If N has constant mean curvature, N being stable means that
N locally minimizes area among surfaces containing the same volume. The
following two lemmas hold for more general surfaces.
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Lemma 3.7. Assume that (M, g, K) is AF-RT at the decay rate g € (1/2,1]
and m > 0. Let N be a normal graph of 1 over Sgr(p):

N ={U(z) =z + v, : ¢ € C*(Sr(p))},

where 1 satisfies (2.10) in Lemma 2.3. For R large, N is strictly stable and

the lowest eigenvalue
6m

Ho > ﬁ + O(R—Q—QQ)‘

Proof. Let Ly = —A% — % be the linearized mean curvature operator of
standard spheres of radius R in Euclidean space. L has kernel f:

1_,1 ,2_ .2 .3_ .3

ﬁ—span{x pya: p7a: p}'

R2 R2 R2
By Lemma 2.3 and recalling that @(z) = u(¥(z)) € C?(Sg(p)), for any
u € C%(N),

(L) (9() - (857~ 257

Now, we normalize u to satisfy [|ullp2(xy = 1, and it implies u = O(R™1Y)
because the area |N| = 47mR? + O(R?>79). Then by the area formula and
(2.10),

< cR™*7[u || 028, 0))-

/ uLyudo :/ uLnu doe+O(R_2_2q)
N N
_ / T(L ) (U () JW do + O(R~229)
Sr(p)

_ / Lot do, + O(R~2-%),
Sr(p)

Therefore, the infimum of (3.20) is achieved by wu satisfying u € K, up to
lower order terms. We claim that, if u satisfies that u € & and [[u|2(n) = 1,
then

3 M 9

/NuLNuda > IR /NRZC (119, 11g) do + O(R™2729), (3.21)

Let u satisfy the assumption of the claim. By Lemma 2.3,

2
—~Anu = Ut Ej, (3.22)
where

> —3— 7y %4 —3—

E,=0(R™%, and FE), =O0O(R ). (3.23)

Multiply (3.22) by u and integrate over N. Because u is an odd function
with respect to the center p,

/N |VNu|? do = % +O(R™%79). (3.24)
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Then notice that, by (2.14) and (2.15),

H 2 2
|An|]? = =X 4+ \A > = 2 + = 7 (HN — R> + O(R™ 2%,

By the definition of LN,

2 2 2
/NuLNudJ:/n|VNu|2da—RQ—/NR<HN—R> u? do

- / Ric™ (114, pg)u? do + O(R™2729). (3.25)
N

If we substitute the gradient term in the right-hand side by (3.24), it elim-

inates the second term 2/R?. However, we do not know the sign of the

remainders which are still of higher order O(R~279). Therefore, we have to

derive a better estimate on the gradient term to cancel out the third term.
Recall the Bochner-Lichnerowicz identity:

1
iAN\VNUIQ = (Hessyu)® + (VVu, VN Anu) + K(VVu, VVu)

(Anu)?
2
where K is the Gauss curvature of N. After integrating the above inequal-

ity, the left hand side vanishes because IV is a compact manifold without
boundary. Then using (3.22) and (3 23),

> + (VNVu, VN Anu) + K(VVu, VVu),

1
/ \VNu|? do > -5+ / KIVVu?do + O(R™27%9).
Using the Gauss equation, (2.14) and (2.15),

1 ) 1
K :i(HJQV - |A|2) - RZCM(NgaNg) + iRg

1 1 2 . _o_
“g & (1 )~ i ) + 0L

where we use that R, = O(R™2729) by the constraint equations (1.2). Hence,

/ \VNu|?do > >7 +/ (HN - 2) E|vNu\2do—
R/ 2
R2
= [ Ric (g, 11) 5 19V do o O(R220),
N

Substituting the above inequality back to (3.25), we have, for any u satisfying
that u € & and [Jul|p2(n) = 1,

2 N o2 2 9
> I \V4
/NuLNuda / <HN R) ( | ul® — RU ) do

/ch (g, fg) <2VNu]2+u2> do + O(R™2729).
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In particular, we choose v;, for ¢ = 1,2, 3, to satisfy

. 3 —p
v = 7.%' P
4 R2
Then, for each 7, because
3 o
~12 )
VS R T R
we get
3 v? 4
VN0, = i TOR -y,
Hence,

2 3 3
iLnvido > Hyv— =) [ —— — 242} 4
[ wtnwde= [ (x-3) (i~ p0?) do
3 1
M 2 —2-2
_/NRZC (Mg,ﬂg) <8ﬂ_R2+2’l}i> dJ+O(R Q).
Let u =Y, v;. Then, because >, v? = 3/(47R?) + O(R™279),

/uLNud0:Z/ UiLNUidO'—FO(R_Q_Qq)
N —JN

3
>
~  AnR?

[ Ric g, 1) do + OB 20),
N

We prove the claim.
To complete the proof, we use the alternative definition of the ADM mass
(1.4) and obtain,

/ RicM (114, pg) do = / RicM (v, ve) doe + O(R™179)
N Sr(p)

_ 8mm g
=R +O(R ).

O

In order to apply the inverse function theorem, we prove that Ly is in-
vertible. We show that the lowest eigenvalue of Ly without any constraints
is negative, and the next eigenvalue is strictly positive.

Lemma 3.8. Assume that (M, g, K) is AF-RT at the decay rate g € (1/2,1]
and m > 0. Let N be a normal graph of 1 over Sgr(p):

N = {U(z) =2+, : 9 € C*(Sr()},

where ) satisfies (2.10) in Lemma 2.3. For R large, Ly is invertible, and
Ly : CO%%(N) — C*%(N) satisfies |Ly'| < em™'R3.
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Proof. Let ng be the lowest eigenvalue of Ly without constraints. By Lemma
2.3,

no= inf / [[VNul? = (JAn|? + Ric™ (ug, pg)) u?] do
{llull2=1} JN
2 o
>— 5 +O(R 2y,
On the other hand, if we replace u by a constant, we obtain the reverse
inequality. Hence,

2
M= —Fz + O(R™279). (3.26)

Let hg be the corresponding eigenfunction
Lnho = noho.

We show that hg is close to a constant and derive an L? estimate on the
difference of ho and its mean value hg := [N|™! [ ho do.

Ly (ho — o) = mo(ho — ho) + (o + |An[* + Ric™ (g, 1)) ho.  (3.27)
Multiplying the above identity by (hg — ho) and integrating it over N:

/ V¥ (ho — ho)? do —/ (n0 + [AN1? + Ric" (g, 1g)) (ho = ho)? do
N N

4 /N (0 + |An|? + Ric™ (19, 113)) (o — o) Foo dor

Similarly as shown in the previous lemma, because hg — hg has zero mean
value, the left hand side is bounded below by

_ 2 _
/ |V (hg — ho)|? do > <R2 +0 (R—Q—q)> / |ho — hol* do.
N N
Also, pointwisely
o + [An|* + Ric" (ug, ppg) = O(R™?79). (3.28)
Therefore,
2 _ _ _
R?/ \ho — ho|? do < cR—H/ \ho — hol? do + cR—2—q/ |ho — ho||ho| do.
N N N
Using the AM-GM inequality to the last integrand:
_ 1 _ -
[ho = hollhol < - R?Iho — hol? + cR™ho|?,
We obtain, when R large,
lho = Roll z2(a) < R~ ho| [N |2 (3.29)

In particular, hg # 0. Let 1; be the next eigenvalue with the corresponding
eigenfunction hi. We show that 7 is positive and, moreover,

6m o
m = E‘FO(R 272,
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Note that

0:/ hohldO':/(ho—ho)(hl—hl)d0+/ E()hld(f.
N N N

Then, by Holder’s inequality,

‘/ hldO'
N

Substituting (3.29) into the above inequality, we get
Ry < eR7UN|TY2|[hy — halr2 - (3.30)

< [ho| ™ lho — holl 2y llP1 — Pallz2 (-

Because Lyhy = mha,
/ (hl *El)LN(hl *El)dO' = / 1’]1(h1 *El)z dO’
N N

+ / Tn(hy — T) (m + |An[? + Ric™ (g, py)) do
N

Because 1 + |An|? + RicM (g, pg) = constant + (R7279), and by Holder’s
inequality, the last integral is bounded above by

cR™2INV2 Ry [||hy — R |l 2y (3.31)
By Lemma 3.7, (3.30), and (3.31),
pollhn = 72y < (m + cR72720)|[ha = B[22,

Therefore,

o 6m o
m > po +cR 2 ZqZﬁ‘FO(R 2 2q)'

This finishes the proof. O

The family of constant mean curvature surfaces {3} constructed in The-
orem 3.1 satisfies the assumptions of N in the previous two lemmas. They
imply that, in particular, Xg is strictly stable and Ly, is invertible. In
the next theorem, we use the invertibility of Ly, and the inverse function
theorem to show that {¥z} form a smooth foliation.

Theorem 3.9. Assume that (M,g,K) is AF-RT at the decay rate q €
(1/2,1] and m > 0. Let {Xr} be the family of surfaces with constant mean
curvature constructed in Theorem 3.1. Then {¥r} form a smooth foliation
in the exterior region of M.

Proof. Let H : C%%(Xg,) — C%*(Xg,) be the mean curvature map so that
H(u) is the mean curvature of the normal graph of u over Xg, .

Because dH = —Lyg is a linear isomorphism by Lemma 3.8, H is a
diffeomorphism from a neighborhood U of 0 € C*%(Xg,) to a neighborhood
V of H(0) by the inverse function theorem. By our construction of {¥g},
for R close to Ri, {¥gr} are the unique constant mean curvature surfaces in
a neighborhood of ¥r. Moreover, {¥r} vary smoothly in R.
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To show that {¥r} form a foliation, we need to prove that ¥ and Xp,
have no intersection for any R # R;. First, when R is close to Ry and X is
the graph of u for u € U, we show that u has a sign; in particular, u cannot
be zero. In the following, we denote X g, by X.

By the Taylor theorem, for any u € U,

H(u) = H(0) — Lyu + /0 (dH(su) — dH(0)) uds,

where H(u) and H(0) are constants. By integrating the above identity over
%,

H(0) — H(u) = —%a N (3.32)

and
|Es| < cR™*u| + cR™?||u*|| o2, 0)) -

We decompose u = hg + ug where hg is the lowest eigenfunction of Ly, and
fz hougdo = 0. Then

|u —E0| < |h0 —EQ| + |u0]

Claim: The right hand side of the above inequality is small compared to
hg. Moreover precisely,

sup |ho — ho| < eR™hy,
)

sup |ug| < eR™hg.
b
Assuming the claim, we obtain, by choosing R large enough,
- 1 - N
ho — = |ho| < u < ho + = |hol .
2 2
Because hg is nonzero by (3.29), u has a sign, and the theorem follows.

Proof of the claim. Recall that hg — hg satisfies (3.27). On a coordinate
chart, (3.27) is a second order elliptic equation. We choose the coordinate
chart to be a ball of radius R on . Then the number of charts to cover X
is independent of R. Using the De Giorgi-Nash—Moser theory [8, Theorem
8.17] on each chart and summing over the charts, we obtain

sup |ho — hol
>

< cR7Yho = hollz2(sy + clhol ||no + [As]? + RiCM(Hg»Mg)HLz(E)
< ¢RIy, (3.33)
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where we use (3.28) and (3.29). To prove the second inequality in the Claim,
we need the Holder estimate on hg — hg. By [8, Theorem 8.22] and (3.33).

[h() _EO]O,a
<c <Ra Sup |ho — hol + |hol ||no + |As|* + RicM(Ng,Mg)HLz(Z)>

< cR™“7hy. (3.34)

To estimate supy, |ug|, by the definition of uy and ho,

9 1
Lyug =Lyu — nohg = _ﬁﬂ —noho + Es + / (dH(su) — dH(0)u)uds
0

2
R?
where we use (3.32) in the second equality and 1y = —2/R? + O(R™279) in
the third equality. Because Ly has no kernel, by pulling back the equation
to unit spheres and using the Schauder estimates,

_ 9 et
(ho — ho) — o+ O(R™>Ju* | o251 (o))

lugllczas, o)) < € (I1hg = hollco.a s, (o)) + [Tol + R™U|u* || c2.a (s (0))) -
(3.35)

Because hg satisfies Lyhg = moho and 179 = O(R™2), using the Schauder
estimate on hg in the second inequality below, we have

[ule2.e s 0)) < cllugllczais o)) + ellbollozas, (o)
< clluglleza(s; o)) + cllhollcoa(s, o)
< cl|ugllcza (s, (o)) + cllho = hollco.a(s, 0)) + clhol-

Therefore, combining the above identities and absorbing the term cR™||ug|| c2.a (s, (0))
to the left of (3.35) for R large, we have

[ugllc2.a (s o)) <€ (Iho — hollcoas, o)) + [0l + R™|hol)
<cR[Tio| + |0, (3.36)

where we use (3.33) and (3.34) in the second inequality. It remains to
estimate [to|. Because [y hougdo = 0, similarly as in (3.30), we have

/ uo do
P

and then by (3.33)

< 2|N|ho|™! Sup |ho — hol Sup o

[ag| < Q\Eorl sgp |ho — Eo\ Slzlp lug| < eR™1 5121p luol.

Then |up| could be absorbed into the left hand side of (3.36) for R large. O

We prove that in the neighborhood U where the inverse function theorem
holds, two surfaces in the family of {3} have no intersection. Because the
size of U is independent of R by the uniform bounds of |d*H| and |Ly'|
(c.f. [11, Proposition 2.5.6]), we could inductively proceed the argument
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toward infinity of M and conclude that {¥g} form a foliation in the exterior
region.

O

4. UNIQUENESS OF THE FOLIATION

In this section, we assume that (M,g, K) is AF-RT with ¢ € (1/2,1]
and m > 0. X is the surface with constant mean curvature constructed in
Theorem 3.1, and Xy is a cgR' ~9-graph over Sr(C) as in Corollary 3.5.

4.1. Local Uniqueness.

Theorem 4.1. Assume that N has constant mean curvature equal to Hy,,.
Given any c1 > 2cq, there exists o1 = o1(c1) so that, for R > o1, if N is a
c1R'™-graph over Sr(C), i.e.
N = {z +uv, : uec C**(Sg(C))}
with
[0 || o2 sy (0)) < LR,
then N = Xg.

Remark. Notice that we do not impose any condition on (u*)°%.

Lemma 4.2. There exists a constant ¢; so that N is a ¢} -graph over S(C, R)
and N has constant mean curvature equal to Hy,,, then N = XR.

Proof of the lemma. Assume that N is the graph of v over X r. By using
the invertibility of Ly, we first prove that there is a constant ¢} so that if
[vl|c2a(ny) < 26, then v = 0.

By Taylor’s Theorem, and because N and ¥ have the same mean cur-
vature,

1
Lev— / (dHs, (sv) — dHs, (0)) v ds.
0
Because |Ly.}| < em™'R® by Lemma 3.8, and by (3.7),
YR

1
[oll g,y <em™ 'R /O (dHs, (sv) — dHs, (0)) v do

C0, (ER)

<em ' RAR7¥ 0| 2o,y < om0l R s,

This implies ¢~ tm < [v]¢2.0(5,)- Choose any ¢} < (2¢)~tm. If [vllc2esg) <
2¢), then v = 0.

By the construction in Theorem 3.1 and (3.18), X is a 2 'cgR! 29
graph over S(p, R), and p = C + O(R'~2%) by Corollary 3.4. For R > oy =
o1(g, co, |p—C|, c}) large, S(C, R) is within ¢}-distance of X . Also, because
the normal vectors of ¥r and S(C, R) are close for R large, if N is a c}-
graph over S(C, R), then N is a 2¢}-graph over X i. Therefore, by the above
analysis, N = Xp. O
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Proof of Theorem 4.1. By the assumption, N is the graph of u over Si(C)
with [|u*]|c2.a < c;R'79. Because p = C + O(R'24), for R large, we can
assume that N is the graph of u over Sr(p) with |u*|c2.e < 2¢iR'Y7Y.
Recall that Lg denotes the linearized mean curvature operator on Sg(p)
with respect to g. By Taylor’s Theorem,

1
Hg(u) =Hg(0) — Lsu +/0 (dHg(su) — dHg(0)) uds. (4.1)

Also, recall that Lo = —A§ — (2/R?) and & = KerLg. Let ¢ be the function
defined as in Lemma 3.2; that is, S(p, R) is the graph of ¢ € & over Sg(p)
and

Lop=f—RP9Y A’ —p') - T,

where f = Hg(0)—(2/R). Then we show that u— ¢ is small. Because N and
Y r have the same mean curvature, Hg(u) = 2/R + f by the construction of
Y.g in Theorem 3.1. Therefore,

Lo(u—¢) =R~ Z A’ = p') + (Lo — Ls)u

1
—I—/ (dHg(su) — dHg(0)) uds. (4.2)
0
We decompose u into

u=u-+ quZBi(QTi _pi)a

where u+ € & and, for i = 1,2, 3,

. —4+q . )
B' = 31 / (z' — p"udoe.
m Sr(p)

Notice that we only use |u| < 2¢;R'™7 to guarantee B = O(1), and we do
not assume any condition on u°%. Applying the Schauder estimates on to
(4.2), because ut — ¢ € &+,

[(ut = @) llc2a(syo) < ¢RI (1+ [[u*[lc2ags, o)) < e(l+ 2c1) R34
(4.3)

To estimate the part inside the kernel, we first rewrite (4.2):

Lg

R0) Bt - pi)] = —Lo(u—go) + R2713 " A'(a’ —p)

b (Lo — Le)ut + /0 (dHs(s) — dHs(0)) u ds. (4.4)

Then we multiply the above identity by >, B'(z — p’) and integrate it over
Sr(p) with respect to the area measure do. First notice that, by (3.4), (3.5),
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and Lemma 2.1, for a = 1,2, 3,
/ (% — p*) R3¢ Z Al(z' — p')do, = 8Tm(p® — C*) + O(R™9)
Sr(p) i

= O(R'™%9).
Also,

[ =)o Lot do

Sr(p)

= / (2% —p*) (Lo — LS)(ul —¢)do + / (x% — p*) (Lo — Lg)¢ do.
Sr(p) Sr(p)

Combining (4.3) and the fact that ||(¢*)°%||c2a < cR79, the above term
is O(R'729). For other terms in the right hand side of (4.4), they are of
order O(R'~29) after integrating with >, B'(z' — p') as well. Concluding
the above estimates and using the eigenvalue estimate on pg in Lemma 3.7
(for the operator Lg on Sg(p)),

6m _3_ _ i/ i i -
<R3+O(R ’ q)) R7| Y B (e = p)llr2(snp < R

That is, the bound on B?,i = 1,2, 3, is improved:
|B'| < cR™%. (4.5)
Therefore, using (4.3) and (4.5),

< 2¢(1 +¢;)R72.
CZ,a

1w = ) [l <[[(u = ¢)* [l +

Rl-4 Z Biy
i

By choosing R > a1 = a1 (o, |¢*[|c2.e, [|(6%)°™ || c2.0, 1), We have

/
N c
I = 6)lleae < 2

Because the normal vectors of Sr(p) and of S(C, R) are close enough, we
could arrange N to be a ¢j—graph over S(C, R). Then by Lemma 4.2, N =
. 0

The above theorem says that, among surfaces which are spherical and
close to the Euclidean sphere centered at C, X is the only one with the
constant mean curvature Hy,. In particular, we can generalize the above
results to the spherical constant mean curvature surfaces.

Corollary 4.3. Assume |p — C| < c3R'™1. Given any ¢4 > 2(co + c3),
there exists o1 = o1(co, c3,c4) so that, for R > o1, if N has constant mean
curvature equal to Hy,, and if N is a caRY~9-graph over Sgr(p), then N =
YRr-
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Proof. Assume that N is a c4R'~9-graph over Sgr(p). Because the normal
vectors on Sg(p) and Sgr(C) are close and |p — C| < c3R'™9, N is a (co +
c3)R'~9-graph over S(C) for R large. Then we can apply Theorem 4.1 (by
letting ¢; = ¢ + ¢3) and derive that N = Xp. O

4.2. A Priori Estimates. In this subsection, we assume (M, g, K) is AF
at the decay rate ¢ € (1/2,1] (note that the RT condition is not assumed).
For general surfaces N in M with constant mean curvature, we would like
to derive a priori estimates and show that they are spherical under the
condition that N is stable.

Let N be a smooth surface with constant mean curvature H and N be
topologically a sphere. Assume that N is stable, i.e.

/ uLyudo >0, for all u satisfying [y udo = 0.
N

Let the minimum radius and the maximal radius of N be defined by r =
min{|z| : z € N} and 7 = max{|z| : z € N} respectively. A denotes the
second fundamental form of N, and A = A — %H gn denotes the trace-free
part of A. pg4 is the outward unit normal vector field on IV, and A and V are
the Laplacian and the covariant derivative on N with respect to the induced
metric gy. Moreover, we denote R;j; or Riem the Riemannian curvature
tensor and Ric the Ricci curvature tensor of (M, g, K) respectively.

The following Sobolev inequality can be found in, for example, [10, Propo-
sition 5.4].

Sobolev Inequality. For r large, there is a constant csop S0 that for any
Lipschitz functions v on N,

(/Nm da>é < Csob /N(|Vv| + H|v|) do (4.6)

Lemma 4.4. Assume that N is a smooth surface in M with constant mean
curvature H. Also, assume that N is topologically a sphere and stable. Then
there is some constant ¢ so that the following estimates hold for r large,

(1) For any s > 2, / 2| % do < er®*,
s _a
o |, =
(3) cp < HYIN| < c.
Proof. Using the first variation formula as in [10, Lemma 5.2], for any s > 2,

/ 2| 7% do < er® *H?|N|.
N

Because N is topologically a sphere, by the stability condition as in [10,
Proposition 5.3] and the fact that the Ricci curvature is bounded by |z|=274,
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we have
/ |A|? do < er""H?|N].
N

If (3) holds, especially the upper bound, then both (1) and (2) directly
follow.

The lower bound in (3) can be derived by letting |v| = H in the Sobolev
inequality (4.6). Let IC be the Gauss curvature of N. For the upper bound,
the Gauss equation implies

1 .
/ —H*do :/ [ZIC + A2 = Ry + 2Ric(pug, p1g) | do
N2 N

Sc+c/ (AP + 2] 7279) do
N

<c+cr ?H?|N].

For r large, the last term is absorbed to the left hand side, and (3) is
proved. O

Assume that the Greek letters range over {1,2}, and the Latin letters
range over {1,2,3}. For any surface N in M, the Simons identity [15] states

AAaﬁ :vanH + HA(;A(;B — |A|2Aaﬁ + AiReBe(S + A6€R5age
+ Vg (Ricakuk) +V° <Rkag51/k) .
Because H is a constant, the Simons identity gives an equation on A. We
show that A is small in the following lemma.

Lemma 4.5.

e = il + i + ], < e

. .12
Proof. First by the Cauchy—Schwarz inequality |[VA? > ‘V|A[) . Then

by direct computations and the Codazzi equation (see [12, Corollary 3.5]
or [14, p. 237)):

o o |2 °
VAP - [91A]|" 2 VAR - 22 (wl? + rvm?)
2 2
_34|VA\ ‘V\Aw |w[ +|VH]),

where w = Ric(-, j15)T denotes the prOJectlon of ch(-, ftg) onto the tangent
space of N. Substitute the above inequality into the following identity:

o o o |2 o o o o
2| A|AJA| + 2 ‘V]A\‘ = AJA]? = 24°PAAus + 2VAPR. (47)
Then we have

o o . o 1 o
AIAIA] 2 AP D Aas + IV + o jV|A|] |w\2+ IVH?) .
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Because H is a constant, we use the Simons identity in the above inequal-
ity and have

|AJAJA| >HAY A Asg — |APAP A + AP A° Reges + A% A% Ry
+ fiaﬁvﬂ (Ricakl/k) + AoByd <Rkaﬁgyk)
1, oo 1 12 16
S VAP + ) A ’ ~ 2w 4.

A direct calculation shows that the first two terms on the right hand side
are

HAAS Asz — |APAP Ay = —(JA]? — H)|AP? + HAP A? Asp.

The last term is the sum of the cubic of the eigenvalues of A, which van-
ishes because A is trace-free and N is two-dimensional. Then integrating
—|A|A|A] over N yields

35 . 1 .
e A 2 - A2

(vt + 1vAp) do

< / (|A]? = H*)|AP? do — / (AaﬁAiRﬁgeg+AaﬁA5€R5ag€) do
N N

. . 1
. / [AaﬁVg <Ricakvk> + AaBy? (Rkag(;z/’“ﬂ do +/ 16102 do.
N N 17
(4.9)
The last term in the second line can be bounded by
e [ (AP Riem] + HA|Riem ) do < [ [a] 21 AP + HLA) do.
N N

Using integration by parts and the Codazzi equation, the first integral in the
third line can be bounded by ¢ [ |w|? do. To estimate the first integral in
the second line of (4.9), we use the stability condition. Because N is stable,
for any u with mean value u, by the stability equation for u — u:

/|A|2u2da

N

S/ \Vu]Qda—i—/ ]A]2(2uu—u2)da—/ Ric(jig, pig)(u — @)% do
N N N

o 1
§/ |Vu|2da+/ <|A|2+H2> (2uu—u2)da—|—2/ |Ric(x)|(u?® + T@?) do.
N N 2 N

Because 2uti — w2 < u? and |Ric(x)| < ¢|z|~279, we let u = |A| and rewrite
the above inequality as follows:

1 o o o
/ (|A[2 H2> |A]? do g/ |V|A|2do+2u/ |A? do
N 2 N N
+20/ || =274 (y/i\%ru?) do.
N
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Multiplying the above inequality by 69/68, and adding it to (4.9),

o o 12 o o
/|A|4da+/ ‘V|A|‘ da—i—/ yVA|2da+H2/ 1Al do
N N N N

< cu/ |A|3da+c/ 2|24 (|,Zi|2+52) da+c/ HI|A||z| "2 do
N N N

+c/ 2|72 do.
N

Because H|A|HL2 < ¢r~% by Lemma 4.4 (2), by the Holder inequality and
Lemma 4.4 (3),

2
u? = |N| 2 (/ \A|da> < \N\_l/ |Al2do < ¢|N|7'r™ < er™9H?.
N N

By the AM—GM inequality and the above identity,

o . 1 . .
cu/ |A]Pdo < / A\4da+crqH2/ |A|% do.
N 4 N N

For r large enough, these two terms could be absorbed to the left hand side.
Similarly, we estimate the rest of the terms

c/ || 279 (!/01\2—1-@2) da—i—c/ el ——
N N
1 ,
< / |A|Ydo 4 r > 9@ |N| + er27%,
4 Jn
and
o 1 o
c/ HIAllz| 27 do < H2/ A2 do + er—2%.
N 2 N
We then derive
e+ [l + o], + el < et
L2 2 L2 L2
O

Remark. In particular, comparing to Lemma 4.4 (2), the L? bound of |A|
18 1mproved:
1]

4.3. The Position Estimate. In this subsection, we assume that (M, g, K)
is AF at the decay rate ¢ € (1/2,1] (note that the RT condition is not
assumed). Assume that N has constant mean curvature H and that N
is stable. In order to prove that N is spherical, we derive the pointwise
estimate of |A| by the LP-estimates on |A| in the previous subsection and
the Simons identity for \A| Inspired by [13], we apply the Moser iteration
to functions satisfying this type of the differential equation below.

< cH lp17, (4.10)
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Lemma 4.6. For any functions u >0, f >0, and h on N satisfying
—Au < fu+h, (4.11)
we have the pointwise control on u as follows:

Supu < c(Ifllzz +H + =) (ull g2 + rH R £2).

Proof. Replacing v by v? in the Sobolev inequality (4.6) and using the Holder
inequality, we derive a variant of the Sobolev inequality

</Nv4da>é§c</ |UHVU|d0'—|—/ H02d0>1 |
§c</v da> [(/ ]Vv]2da>2+</NH2v2d0>2].

(4.12)

Let k be a positive constant and @ = « + k. Then multiplying @?~! on the
both sides of (4.11),

h h )
— i < fal — kfiPT g P < fal 4 Al = fil) (4.13)

where f = f + k~1h. Integrating (4.13) and using

2

p Ap— .
= gy~ DAVl

[SIiS]

V(@

we have, for p > 2,

2 ~
/ (v @[ do = p/ —ap—lAada<p/ faP do.
4(17— 1) Jn N

We let v be @2 in (4.12) and substitute the gradient term by the above
inequality. Then,

(/Nﬂzpda>;§c(/Nﬂpda> [(p/}vﬂpfda>;+</NH2ﬂpda>;].

By the Holder inequality, the last two terms can be bounded by

o) i ([e) ([ )
(/NH2ana>2g (/NH4d0) (/Nu2pdo>4

=

D=
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Therefore, using the above inequalities and the AM—GM inequality,

1 1 1
2 1] 2 . 3
</ ﬂ2pda> <= </ a2pda> —l—cp(/ apd(f) </ f2da>
N 2 \Jn N N
%
+c</ ﬂpd(f) </ H4d0> .
N N
Therefore,

</Na2pda <cp /f2d0 +</NH4da>1 (/Napda>.

Then, using Lemma 4.4 (3) to bound H?|N|'/2 < ¢H, we obtain

1 1

(/N 2pda)2“’ <cppp (Hme—i—H);’ (/]Vﬁpd0'>p.

Now letting p = 2°,i = 1,2,3, ..., we then have

—1-1

(o) <[e(Uitesm)] ™" om0

Let I — oo,
supii <c (||l + H) lillz2
<c(Ifllpz + kbl e + H) (|ull 2 + kHY),

where we use |N|'/2 < ¢H~'. Let k = r|h|| 2. Then the proof is completed.
(]

Corollary 4.7.
sup [A] < e(r™1 7+ H™lp7279),
Furthermore, if r > H~® for some fized a < 1, then
sup |[A| < cH'™,

2
where e = (2+q)a—2, and € > 0 1 <a<l.
e=(2+4q) € f2+q <

Proof. Notice that by (4.7) and the Cauchy—Schwarz inequality,
—|A|AJA] < —APAA,p.
Using the Simons identity and the estimates in Lemma 4.5, we have
—AJAJA| <(JA]? = H2)[A]2 = A% A3 Reges — AP A% Ry,
— APy, (Ricakuk) — AoByd (Rkaﬁ(w’f)

< (JAI" + |APJe[770 + HIAl|o| 270 + 4]z 777)
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where we have used that |R;jx| < c[z|727% and |[VR;| < c|z|7379. Set
u=|A],
f=c(AP + a7,
= e(HJal 70 + 2] 579)

By Lemma 4.5,
lull 2 < cH =70 flle <er™9 lhflge < e
The corollary follows by Lemma 4.6. ([

Because M is AF, the estimates on |A| yields the estimates on |A¢| when
N is treated as an embedded surface in Euclidean space. We prove that N
is a graph over the sphere Sy, (p).

The following lemma is a generalization of [10, Proposition 2.1] where that
M was assumed strongly asymptotically flat. A similar argument allows us
to generalize to AF manifolds at the decay rate ¢ > 1/2 and to remove the
conditions on |[VA| and 7. We include the proof for completeness.

Lemma 4.8. Let N satisfy the assumptions as in Theorem 2. Then, there
exists the center p so that for all z € N,

NG —rgt| < cHe (4.14)

< cH® (4.15)

where ro = 2/H, X% and ve(z) are the principal curvature and the outward
unit normal vector at z with respect to the Euclidean metric. Moreover, N
is a graph over Sy,(p) so that

N={z=z+vy:2€ S,(p),ve Cl(Sm(p))}
and ||v*|| o1 < cH™1Fe.
Proof. By Corollary 4.7, sup |A| < cH'*¢. Because M is AF and r > H™ ¢,
for r large,

sup | A°| < sup [A] + er 7179 < cH'
N N

|H® — H| < er 174 < cHtE,

We would like to use the bound of these Euclidean quantities to show that
N is close to some sphere in the Euclidean space. To derive (4.14),

1 1 1 1
¢ — —H| <[\ — —H®|+|=H°—-H
A’L 2 iy )\Z 2 + 2 2

§|/°13| +CH1+5 < cHME.

Let r;' = (1/2)H, and then (4.14) follows. To prove (4.15), we first derive
the upper bound on the diameter of N which is defined by the intrinsic
distance on N equipped with its induced metric from the Euclidean space.
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Let K be the Gauss curvature of N. Using the Gauss equation on N in
Euclidean space,

"C_ %(He)Q < |Ae‘2 < CH2+2E.

Hence, |K| > 1H?, for H small. The Bonnet-Myers theorem says that
diam(N) < cH~!. Then, let z be the position vector and gy be the induced
metric on N from Euclidean space. By the Gauss—Weingarten relation

e J ie 1 e ]
Oive = Aijgg\fakz = (Aij - iH (QN)jk> g?f@kz.
Then,

1 o 1 ;
0; (ye - 2Hz> = [A;?j — 5 (H H)(gN)jk] GOz

We integrate the above identity along a geodesic, and derive, for some p,
Ve — 75 (2 — p)| < esup (\Ael + |H® — H\) diam(N) < cH*.
N
To prove that N is a graph over S, (p), we define v(z) = |z — z| where

x € Spy(p) is the intersection of the ray z — p and S,,(p). By (4.15) , for H
small,

In particular, v, never becomes perpendicular to the radial direction, so
N ={z+vZ2:2¢€8,,(p)} is well-defined. To obtain the C* bound on v,

T0

we have ||z — p| — ro| < cH 71" by (4.15), and then

[vlco = sup |z — x| < sup ||z — p| — ro| < cH .
zeN zEN

Moreover,
0v] = |z — 2| [(VE(z — @), 2 — 2)| < [V¥(z — p) — V(2 —p)l.
Using (4.15) and that |[Ve(v® — Z=2)| < |A°|, we obtain
|Ov| < cH®.

14-€

Therefore, we conclude [|v*||c1(g,(0y) < ¢H ™ Moreover, because v, and

vy on N are close in c?e
N ={z+yyv:v e CSy[)}
for some v satisfying [[v*||c1(g, (o) < cH~1te, O

In order to use the Taylor theorem to the mean curvature map, N should
be a graph whose C?®-norm is under control. Therefore, we have to derive
the pointwise estimate on the C1®-norm of A. A modified Moser iteration
which involves the special choice of the cut-off functions is employed.
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Lemma 4.9. For any functions u >0, f >0, and h on N satisfying
—Au < fu+h, (4.16)
we have the pointwise control on u as follows:

supu < ¢ (IFlz2 + H + 271 (lull g2 + 22|14l 2)-

Remark. Comparing this lemma with Lemma 4.6, the term H !|hl|;2 =
(1) (L H V[ l] ) is replaced by r[h]l 12 = () (r2 A 2). The term H|h]|
is unfavorable because if this term appeared in Corollary 4.10, it is bounded

by H~'r=3=% which may not be bounded by H?*¢ for € > 0, when 2/(24q) <
a<1.

Proof. Let k be a positive constant. As in the proof of Lemma 4.6, we define
@ =u+kand f = f+k~'h. Let x be a cut-off function on N. The same
calculations in Lemma 4.6 give

2 R
/ ’V(Xﬁg) do < p/ X2ftP do +/ |Vx|?0P do.
N N N

By (4.12) and letting v = ya?/2,

1
2
(/ xta2r da) <c(H + sup yvxy)/ P do
N N SUpP(x)

1/2 R 1/2
+c (/ 2P d0> <p/x2fﬂp da) .
N

Using the AM—GM inequality to the second line and absorbing the term
x*4?P to the left, we obtain

1
3 R
(/ xta2p do> <cp [Hf\Lz + H + sup ]VX} / aP do.
N N supp(x)

Let p; = 2¢,i =1,2,3,.... Fix 29 € N. The cut-off functions supported on
N is defined by, for z € N,

1 lf z e B(1+2—i)£(2’0)
0 if z outside B(1+27i+1)z(20)

Xi(z) =

and |Vy;| < 2r~%. Then

ol+l
/ W2 do
B

(1+2*l)z(ZD)

2—1—l

i cy—i ~ l —q
< Dz 29X 2 I:HfHLZQzl 2

l. —1 7 — Zi: 2_i ?
FHZ= 2T 4 (2 ] 10l 22 (B 20)

Let | — oo,

S )ﬁ < c(Ifllzz + H + 7l 28y (20))-
r{Z0
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Let k =r||h| /2. Then

_ 2
BSI(lp)u < c(Ifllz2 +H + Y (lull 2 + Al | Bar(20)] ).
(20

By the area formula, because g is AF, and N is a graph of v over S,,(p)
satisfying |0v| < cH¢ by Lemma 4.8,

| Bar(20)| = / do < / (1+cH)doe
Bay(20) Bar(20)

< 2/ do. < sz.
BQz(ZO)

O

Corollary 4.10. Assume that N satisfies the assumptions in Theorem 2.
Then

sup [VA| < er ™' 7(r™" + H).
N

Moreover, if r > H™% for some fized a < 1, then

sup |VA| < cH?*e,
N

where e = (2+ q)a— 2 > 0, z'fg%rq<a§1 .
Proof. Let Tyap = Vo Aag.
2ATIAIT| +2|V|T||* = A|T|? = 2T7*P AT, 05 + 2|VT .
Because |[VT)? > |V|T||* by the CauchySchwarz inequality,
—|T|A|T| < ~T"P AT, 5.
Changing the order of differentiation in the Laplacian term,
A(V4Aag) =V AAag + 6% (Vedag) Ry, + 07 (VsAeg) RoSy
+ 9" (Vshad Rs'yp + 97V, (AegR;w + A%Rﬁfw) .
By the Simons identity,
(V74°%) 9,8 Aus
—H (W}iaﬁ> v, (AiAgg) - (V’V}iaﬂ) Y, (|A[2Aup)

+ (v%aﬁ) v, [AiRé‘ga; + A% Rsope + Vg (Rz'cﬁfkuk) +V° (Rkawyk)} .
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Then,
(V74°%) V18405 = ~| APV AP
—c (H\VA|2|A| + |V A|2[Riem| + |V A||A||VRiem|
+|VA|H||VRiem| + |V A||V*Riem| + |VA|2|VRiem|) .

Using |Riem| < ¢|z|727%,|VRiem| < c|z|7379, |V?Riem| < ¢|z|~*79, and
combining the above estimates,

— [VAJAIVA| <~V A A (V,Adg)
<c (y,ai|2|vzi|2 + H| VAP + H|A||VAP + VAP x| 27 + VAP 2|51
VAl Al[2] 7 + HITA||2 771 + |V Alla| 7).
By Lemma 4.9, we set u = |VA| and

f=c(lAP + H* + H|A| + |2 7279 + || 7379),
h = c(|A|lz| 374 H|z| 7379 + 2| 7479).

By Lemma 4.4 and Lemma 4.5, ||ul|z2 < cr =179 || f|lz2 < c(r™179+ H), and
|h||z2 < er=379. Then the proof follows directly from Lemma 4.9.
O

Similarly, we can derive that, if r > H~%, then the Holder norm [\VA@ <
(0%

cH?**oF¢ where € = (2 + ¢)a — 2 and € > 0 if 2/(2 + ¢) < a < 1. Using the
same argument in Lemma 4.8, we prove the following:

Corollary 4.11. Assume that N satisfies the assumptions in Theorem 2.
If r > cH™® for some 2/(24q) < a < 1. Then N is a graph defined by
N ={z+vyg:2 € Sy(p)} with

v ez sy o)) < cH T < erg™,
where € = (2+ q)a — 2 > 0.

4.4. Global Uniqueness.

Proof of Theorem 2 . Assume that N has mean curvature equal to H =
Hy,, for some R. By Corollary 4.3, we only need to prove that N is a graph
of v over Sg(p) where |p — C| < cgR*™7 and ||v*||c2.0 < c4R'™Y for some c3
and cy.

By Corollary 4.11, N is a graph over S,,(p) and H = 2/rg. The idea of
the proof is to show that the center p does not drift away too much as H
goes to zero. More precisely, we show that [p — C| < cré*“‘l for some ¢ > 0.
Hence, ryp and r are comparable; consequently, H and r are comparable.
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By the Taylor theorem, because N is the graph of v over S,,(p),
1
H =Hg— Lgv —I—/ (dH (sv) —dH(0))vds.
0

Recall that Lg = —Ag — (JAg|* + Ric™ (vg,v4)), Lo = —A§ — 2, and
R = KerLg. Also recall that ¢ in Lemma 3.2, and ¢ satisfies

Lop=f—ry> 7Y A’ —p') - F,
where f = Hg — 2/ro. Therefore,
Lo(v = ¢) =rg """y A2’ —p') + [ + (Lo — Ls)v

. 7
+/ (dH (sv) —dH(0))vds. (4.17)
0

We decompose v = v + ry “vg, where vg = >, B{(2* — p') € & and

) 3r—4+6 ) )
B'==0 / (' —pvdoe. = O(1).
Ar Js,, )

Because v+ — ¢ € &%, we apply the Schauder estimate to (4.17),
[t = dllcaa < elry™ +757").

Without loss of generality, we assume e < ¢/2. The right hand side of the
above identity is dominated by cré_ze. Consider (vt — ¢)°d:

LO((,UJ_ _ ¢)odd) _ 27,0—3—(] ZAZ(:C% . pi) + (LO o LS)(UL)odd

— 2Ls(ry“ug) + (Ls — Lo)*™v
odd

1 1
sv) — s v sSv) — v ds. (4.
+ [/0 (dH(sv) —dH(0)) d } +/0 (dH(sv) — dH(0)) ds. (4.18)

Then by the Schauder estimate, and using Lemma 2.2 and Lemma 2.3 to
estimate the last three terms,

1 dd dd — - dd 1—q—
(™)) leza < 1(67)° ||cz,a+c(roq+roqll(v*)0 loza + g7
—1- -1 1 dd
SR e [ (Wi I e
Bootstrapping the term ||((v)*)°%|| c2. yields

1((01) )" c2.a(sy 0y < er'T97C

We then integrate both sides of (4.18) with 2% — p® on S,,(p) with respect
to the area measure do.

[ @ =)Ll = 6 do = (),
Sro (p)
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By the definition of A* and Lemma 2.1,
/ (z* — pa)rgg_q Z Al(z' — p')do = 8rm(p® — C%) + O(T(l)_Q ).
S’rg (p) 1

Also, by Lemma 3.7 (there, the equality that uo = 6mm/rs + 0(7“0_2_2‘1) is
achieved by the coordinate functions z* — p*),

o A 6 o
7“06/5 ()(:c“—p“)LSZBI(:EZ—p’)da:roe:;nB“ré—i—O(rg 24 ).
T‘Op , 0

2

The rest terms are of order O(rg29™). Therefore, we have

|pa . Ca| <c (T(l]fe + Té*(ﬁ*QE*l)) )

Recall that € = (2 4+ ¢)a — 2. By the assumption that a > (5 — ¢q)/(4 + 2q),
we have € := ¢+ 2¢ —1 > 0. Then |p?| < cr(l)_el, so the center p may drift
away but at a controlled rate. Let zy be a point so that r = |z,

r=l|z0| > |20 —p| — |p| > 10— cH 1* — e

For rq large, r > crg. Therefore, we can replace the assumption r > H ¢
by r > crg > cH~ ! in Corollary 4.11. Therefore, N is a cré_q—graph over
Sro(p) and [p —C| < cr(lfq. Although H may not be exactly equal to Hy, ,
we can choose R so that H = Hy, with R = ro + O(r,?). Then we can

apply the local uniqueness result of Corollary 4.3 by viewing N as a graph
over Sgr(p) and conclude N = Xp. O

To prove a result of the uniqueness outside a fized compact set, we replace

the condition on r by the condition that 7 and r satisfy 7 < CQz‘fl for any
(5-q)/(4+2¢) <a<1l

Proof of Theorem 3. If N lies completely outside Bp-«(0) for some a satis-
fying (5 — q)/(4 + 2q) < a < 1, by Theorem 2, N = ¥.p. We assume that
N # Y. Therefore N N Bg—a(0) # ¢ for any (5 —¢q)/(4+2q) < a < 1.
Then r < H~* < 3R® if R large enough because H = (2/R) + O(R™179).
On the other hand, for any z € N,

2 4
S <HY2)<2H < — —1-e,
S SH(z)<2H < p+cR
For R large,
2_6
¥~ R
and then R/3 < 7. Therefore,
1 1 R
—— (1) < —— (R < L <T.
()~ (3)a" 3

Choosing any cs < %, we obtain CQf% < 7 which contradicts the assump-
tion. Therefore, N = Xg. O
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