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Abstract. We prove the equality case of the Penrose inequal-
ity in all dimensions for asymptotically flat hypersurfaces. It was
recently proven by G. Lam that the Penrose inequality holds for
asymptotically flat graphical hypersurfaces in Euclidean space with
non-negative scalar curvature and with a minimal boundary. Our
main theorem states that if the equality holds, then the hypersur-
face is a Schwarzschild solution. As part of our proof, we show that
asymptotically flat graphical hypersurfaces with a minimal bound-
ary and non-negative scalar curvature must be mean convex, using
the argument that we developed in [12]. This enables us to obtain
the ellipticity for the linearized scalar curvature operator and to
establish the strong maximum principles for the scalar curvature
equation.

1. Introduction

The Penrose inequality in general relativity states that the ADM
mass of an asymptotically flat manifold is at least the mass of the black
holes that it contains, if the energy density is non-negative everywhere.
A particularly important special case of the physical statement is called
the Riemannian Penrose inequality.

The Riemannian Penrose Inequality Conjecture. Let (Mn, g), n ≥
3, be an asymptotically flat n-dimensional smooth manifold with a
strictly outer-minimizing smooth minimal boundary which is compact
(not necessarily connected) of total (n− 1)-volume A. Suppose that M
has non-negative scalar curvature and the ADM mass m. Then

m ≥ 1

2

(
A

ωn−1

)n−2
n−1

,
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where ωn−1 is the volume of the unit (n−1)-sphere in Euclidean space.
Moreover, the equality holds if and only if (M, g) is isometric to the
region of a Schwarzschild metric outside its minimal hypersurface.

G. Huisken and T. Ilmanen proved the conjecture in dimension three
for a connected minimal boundary [14]. H. Bray used a different ap-
proach and proved the conjecture in dimension three for any number
of components of the minimal boundary [2]. In dimensions less than 8,
the inequality was proved by H. Bray and D. Lee, with the extra spin
assumption for the equality case [5]. In the case that (M, g) is confor-
mally flat, H. Bray and K. Iga derived new property of superharmonic
functions in Rn and proved the Penrose inequality with a suboptimal
constant for n = 3 [4], F. Schwartz obtained a lower bound of the
ADM mass in terms of the Euclidean volume of the region enclosed
by the minimal boundary [19], and J. Jauregui proved a Penrose-like
inequality [15]. For the Penrose inequality (with the sharp constant)
in dimensions higher than 8, the only result that we know, other than
the spherically symmetric case, is the result of G. Lam [16], where he
proved that the Penrose inequality for graphical asymptotically flat hy-
persurfaces. (Note a related work regarding the Penrose inequality for
asymptotically hyperbolic graphs [7, 8].)

Theorem 1 ([16]). Let Ω be an open and bounded subset (not neces-
sarily connected) in Rn, n ≥ 3, and let f ∈ C2(Rn \Ω)∩C0(Rn \Ω) be
asymptotically flat. We assume that the graph of f is a C2 hypersurface
up to boundary with non-negative scalar curvature. Suppose that each
connected component of Ω is star-shaped1 and each connected compo-
nent of ∂Ω is the level set of f with 〈Df(x), η(x)〉 → +∞ as x→ ∂Ω,
where η is the outward unit normal to the level sets of f . Then,

m ≥ 1

2

(
|∂Ω|
ωn−1

)n−2
n−1

,

where |∂Ω| is the (n− 1)-total volume of ∂Ω.

The proof is simple and elegant, which we include in Section 5. How-
ever, the equality case was not discussed in [16], and the techniques
there seem far from sufficient to handle the equality case. Our main
result in this article proves the equality case in all dimensions n ≥ 3.
This may be particularly interesting because there was no rigidity state-
ment for the Penrose inequality, other than the spherically symmetric
case, known to hold for n ≥ 8.

1In [16], each connected component of Ω was assumed convex, but the proof can
be generalized to star-shaped domains.
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Theorem 2. Let Ω be an open and bounded subset (not necessarily
connected) in Rn, n ≥ 3. Let f ∈ Cn+1(Rn \ Ω) ∩ C0(Rn \ Ω) be
asymptotically flat. We assume that the graph of f is a C2 hypersurface
up to boundary with non-negative scalar curvature. Suppose that each
connected component of Ω is star-shaped and each component of ∂Ω is
the level set of f with 〈Df(x), η(x)〉 → +∞ as x→ ∂Ω, where η is the
outward unit normal to the level sets of f . For n = 3 or 4, we assume
additionally that max|x|=r f(x) ≤ min|x|=r f(x)+C for all r sufficiently
large and for some constant C independent of r. If

m =
1

2

(
|∂Ω|
ωn−1

)n−2
n−1

,

then the graph of f is identical to the region of the Schwarzschild solu-
tion of mass m outside its minimal (n− 1)-hypersurface.

Remark 1.1. In dimensions less than 8, the above theorem is implied
by more general results in [14, 3, 5] because hypersurfaces in Euclidean
space are spin. Our proof is different and works for all dimensions. The
additional assumption for n = 3 or 4 that

max
|x|=r

f(x) ≤ min
|x|=r

f(x) + C for all r sufficiently large

means that the oscillation of f at infinity is controllable. We actually
conjecture a stronger statement that an n-dimensional asymptotically
flat hypersurface with zero scalar curvature has the following expansion
at infinity

f(x) =

{
C0

√
|x|+ C1 + o(1) if n = 3

C0 ln |x|+ C1 + o(1) if n = 4,
(1.1)

for some constants C0, C1. This conjecture should compare with the
celebrated work of R. Schoen on the uniqueness of catenoids [18], in
which a preliminary result says that complete minimal hypersurfaces
have specific asymptotics at infinity, up to lower order terms. In gen-
eral, hypersurfaces with zero scalar curvature are more difficult to ana-
lyze than minimal hypersurfaces, because the scalar curvature equation
of the graphing function is fully nonlinear. Assuming certain asymp-
totic behavior of the hypersurfaces at infinity (in all dimensions, which
is stronger than (1.1) in the low dimensions) and the strict ellipticity
condition, J. Hounie and M. Leite proved the uniqueness of embedded
scalar-flat hypersurfaces with two ends [11].

Our proof of Theorem 2 relies on a key observation that an asymp-
totically flat graphical hypersurface with a minimal boundary and with
non-negative scalar curvature must be mean convex. It is inspired by
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our earlier work [12], in which we proved that closed or certain com-
plete hypersurfaces with non-negative scalar curvature must be mean
convex.

Theorem 3. Let Ω be an open and bounded subset (not necessarily
connected) in Rn. Let f ∈ Cn+1(Rn \Ω)∩C0(Rn \Ω) be asymptotically
flat. Suppose that each connected component of ∂Ω is the level set of
f with 〈Df(x), η(x)〉 → +∞ as x → ∂Ω, where η is the outward unit
normal to the level sets of f . If the scalar curvature of the graph of f is
non-negative, then its mean curvature H has a sign, i.e., either H ≥ 0
or H ≤ 0 everywhere.

The mean convexity enables us to derive the maximum principles
for the scalar curvature equation. The proof of Theorem 2 is more
delicate in the case n = 3 or 4, because the graphing function of the
Schwarzschild solution tends to infinity as |x| → ∞, and it is subtle
to compare two unbounded graphs. To control the asymptotical be-
havior of f , we use its asymptotic flatness and develop a global strong
maximum principle (Theorem 4.6) in the region where |x| is sufficiently
large. The maximum principles for the scalar curvature equation are
established in Section 4.

Note that in our earlier work [12], we proved the Positive Mass The-
orem for hypersurfaces in Euclidean space in all dimensions, including
the rigidity statement, which is a direct consequence of our proof of the
positive mass inequality. However, the proof of the equality case of the
Penrose inequality requires a new argument, which is entirely different
from our proof of the equality case of the Positive Mass Theorem.

In response to an interesting question raised by Christina Sormani
and Dan Lee about the hypersurface which is a Schwarzschild solution
outside a compact set, we have the following result.

Theorem 4. There is no complete Cn+1 hypersurface of one end with
zero scalar curvature in Rn+1 which is identical to a Schwarzschild so-
lution with m > 0 outside a compact set.2

The above theorem is in contrast to a general result of J. Corvino [6],
where he constructed the complete asymptotically flat manifold with
zero scalar curvature which is a Schwarzschild metric outside a compact
set, but not identical to a Schwarzschild solution everywhere.

2Note that a Schwarzschild solution may not be uniquely embedded in Euclidean
space as a hypersurface. Here, that a hypersurface is identical to a Schwarzschild
solution outside a compact set is in the sense that the hypersurface is the graph of
h outside a compact set of a hyperplane, where h is the radially symmetric function
that gives a Schwarzschild solution in Proposition 2.6.
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After this article was written and has been distributed among a small
mathematics community, we noticed a preprint by L. de Lima and
F. Girão [9] that announces a proof the rigidity case of the Penrose
inequality using [11] and assuming ellipticity. Our proof is different,
and the main part of our proof is to derive ellipticity and the maximum
principles. We believe that our arguments will have future applications
to hypersurfaces in space forms with the appropriate scalar curvature
condition.

Acknowledgements. We thank Hugh Bray and Romain Gicquaud for
bringing the question about the equality case of the Penrose inequality
to our attention. We also thank Dan Lee for helpful discussions.

2. Definitions, notation, and preliminary results

Definition 2.1. Let Ω be a bounded subset in Rn, n ≥ 3. We say that
f ∈ C2(Rn \ Ω) is asymptotically flat if the following conditions hold

(1) lim|x|→∞ f(x) = C for some bounded constant C, lim|x|→∞ f(x) =
∞, or lim|x|→∞ f(x) = −∞;

(2) |Df(x)| = O(|x|− q2 ) and |D2f(x)| = O(|x|− q2−1), for some q >
n−2

2
, where Df = (f1, . . . , fn), D2f = (fij) and fi = ∂f/∂xi,

fij = ∂2f/∂xi∂xj;
(3) The scalar curvature of the graph of f is integrable over the

graph of f .

Remark 2.2. Under Condition (2), the induced metric of the graph
of f has the asymptotics

gij = δij + fifj = δij +O(|x|−q).
The decay rate q is optimal in order for the ADM mass to be well-
defined, assuming Condition (3) (see [1]).

Remark 2.3. Condition (1) in Definition 2.1 is not needed in the proof
of Theorem 1. Condition (1) is actually redundant for n ≥ 6 because
by Condition (2) and using the mean value theorem along the radial
direction and along the spherical direction, we have

lim
|x|→∞

f(x) = C,

for some bounded constant C.

Definition 2.4 ([12, 16]). Let Ω be a bounded subset in Rn, n ≥ 3,
and let f ∈ C2(Rn \ Ω). The mass of the graph of f is defined by

m =
1

2(n− 1)ωn−1

lim
r→∞

∫
Sr

1

1 + |Df |2
∑
i,j

(fiifj − fijfi)
xj

|x|
dσ,
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where Sr = {(x1, . . . , xn) : |x| = r}, and dσ is the standard spherical
volume measure of Sr.

Remark 2.5. The above definition of the mass is consistent with the
classical definition of the ADM mass [12, Lemma 5.8], cf. [16].

The spacelike n-dimensional Schwarzschild metric is a complete and
conformally flat metric on Rn \ {0}(

Rn \ {0},
(

1 +
m

2|x|n−2

) 4
n−2

δ

)
,

where m is the ADM mass. If m ≥ 0, the n-dimensional Schwarzschild
solution can be isometrically embedded into Euclidean Rn+1 as a smooth
hypersurface. We refer the reader to [3] for detailed discussions, es-
pecially for the n = 3 case. We are interested in the region of the
Schwarzschild solution outside its minimal (n− 1)-hypersurface, which
is graphical as shown in the following proposition.

Proposition 2.6. Denote by Br the open ball in Rn centered at the
origin of radius r. The region of the Schwarzschild solution of mass
m > 0 outside its minimal (n − 1)-hypersurface can be represented as
the graph of h(x) over Rn \B(2m)1/(n−2), where

h(x) = C0 +
√

8m(|x| − 2m) if n = 3,

h(x) = C0 +
√

2m ln(|x|+
√
|x|2 − 2m) if n = 4,

h(x) = C0 +O(|x|2−
n
2 ) for |x| � 1 if n ≥ 5,

for some constant C0.

Proof. Let h ∈ C2(Rn\Br0) for some r0 ≥ 0 be rotationally symmetric.
With a minor abuse of notation, we will write h(x) = h(r) where
r = |x|. By direct computation, the scalar curvature R of the graph of
h is given by

R

2
=

(n− 1)h′′h′

r
[
1 + (h′)2

]2 +

(
n−1

2

)
(h′)2

r2
[
1 + (h′)2

] ,
where h′ = dh

dr
and h′′ = d2h

dr2
. Set y(r) = − 1

1+(h′)2
. Then −1 ≤ y ≤ 0

and y solves

y′ +
n− 2

r
y +

n− 2

r
=

rR

2(n− 1)
.

If R ≡ 0, for some constant C1 ≥ 0, we have

y = C1r
2−n − 1.
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Therefore, for r > (C1)1/(n−2),

(h′)2 =
1

1− C1r2−n − 1 =
C1r

2−n

1− C1r2−n =
C1

rn−2 − C1

.

Then,

h(r) =
√
C1

∫
1√

rn−2 − C1

dr.

Solving the integral, we have, for some constant C0,

h(r) = C0 +
√

4C1(r − C1) if n = 3,

h(r) = C0 +
√
C1 ln(r +

√
r2 − C1) if n = 4,

h(r) = C0 +O(r2−n
2 ) for r � 1 if n ≥ 5.

By computing the mass directly, we have

m =
1

2(n− 1)ωn−1

lim
r→∞

∫
Sr

(n− 1)(h′)2

r(1 + (h′)2)
dσ =

C1

2
.

It is straightforward to check that if m > 0, h′(r) → ∞ as r →
(2m)1/(n−2), and the graph of h over ∂B(2m)1/(n−2) is the minimal (n−1)-
hypersurface in the graph of h. �

Notation. For a hypersurface, we denote by Aij the second fundamen-
tal form, by Aij =

∑
k g

ikAkj the shape operator where gik is the inverse
of the induced metric, by H the mean curvature, and by R the scalar
curvature. If the hypersurface is the graph of u, we compute Aij with
respect to the upward unit normal vector and we can write the above
quantities as the functions of Du and D2u. We may also suppress the
arguments when the context is clear.

gik(Du) =

(
δik −

uiuk
1 + |Du|2

)
Aij(Du,D

2u) =
uij√

1 + |Du|2

Aij(Du,D
2u) =

∑
k

(
δik −

uiuk
1 + |Du|2

)
ukj√

1 + |Du|2

H(Du,D2u) =
∑
i,j

(
δij −

uiuj
1 + |Du|2

)
uij√

1 + |Du|2

R(Du,D2u) = H2(Du,D2u)−
∑
i,j

Aij(Du,D
2u)Aji (Du,D

2u).
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Proposition 2.7. Let h be the graphing function of the Schwarzschild
solution in Proposition 2.6. Then the matrix

(
Hgij−

∑
k A

i
kg

kj
)

of the
graph of h is positive definite everywhere in Rn \B(2m)1/(n−2).

Proof. It suffices to show that (Hδik − Aik) is positive definite, because
Hgij −

∑
k A

i
kg

kj =
∑

k(Hδ
i
k − Aik)g

kj and (gkj) is positive definite.
By rotating coordinates, we can assume that Aik = diag(λ1, . . . , λn)
where λl are the principle curvatures. For the graph of a rotationally
symmetric function h(r), the principle curvatures are

h′′

(1 + (h′)2)3/2
, and

h′

r
√

1 + (h′)2
with multiplicity (n− 1).

Therefore, the principle curvatures of the Schwarzschild solution are

−n− 2

2

√
2mr−

n
2 , and

√
2mr−

n
2 with multiplicity (n− 1).

Hence, (Hδik−Aik) ≥ n−2
2

√
2mr−

n
2 I where I is the n×n identity matrix,

so it is positive definite everywhere in Rn \B(2m)1/(n−2) . �

The following two propositions were proven in our earlier paper [12].
They play important roles to prove the mean convexity of the asymp-
totically flat graphs and to derive the ellipticity of the linearized scalar
curvature operator.

Proposition 2.8 ([12, Proposition 2.1]). Let B = (bij) be an n × n
matrix with n ≥ 2. Denote

σ1(B) =
n∑
i=1

bii, σ1(B|k) =

( n∑
i=1

bii

)
− bkk,

σ2(B) =
∑

1≤i<j≤n

(biibjj − bijbji).

For each 1 ≤ k ≤ n, we have

σ1(B)σ1(B|k) = σ2(B) +
n

2(n− 1)
(σ1(B|k))2 +

∑
1≤i<j≤n

bijbji

+
1

2(n− 1)

∑
1≤i<j≤n
i 6=k,j 6=k

(bii − bjj)2,

where the last term is zero when n = 2. In particular, if B is real and
bijbji ≥ 0 for all 1 ≤ i < j ≤ n, then

σ1(B)σ1(B|k) ≥ σ2(B) +
n

2(n− 1)
(σ1(B|k))2
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with equality if and only if bii are equal for all i = 1, . . . , n and i 6= k,
and bijbji = 0 for all i, j = 1, . . . , n and i 6= j.

Notation. Let N be a (piece of) hypersurface in Euclidean space, and
let µ be a unit normal vector field to N . The mean curvature of N
defined by µ is given by

HN = −div0µ,

where div0 is the Euclidean divergence operator. (The n-dimensional
sphere of radius r has mean curvature n/r with respect to the inward
unit normal vector by this convention.) We denote by 〈·, ·〉 the standard
metric on Euclidean space. With a slight abuse of notation, we may
view η as a vector in Rn, as well as a vector in Rn+1 by letting the last
component be zero.

Proposition 2.9 ([12, Theorem 2.2]). Let M be a C2 hypersurface in
Rn+1. Consider the height function h : M → R given by h(x1, . . . , xn+1) =
xn+1. Let a be a regular value of h. Denote by

Σ = M ∩ {xn+1 = a},

which is a C2 hypersurface in {xn+1 = a} and |∇Mh| > 0 at every point
in Σ. Denote by ν and η the unit normal vector fields to M ⊂ Rn+1

and Σ ⊂ {xn+1 = a}, respectively, and denote by H and HΣ the mean
curvatures of M ⊂ Rn+1 and Σ ⊂ {xn+1 = a} defined by ν and η,
respectively. Let R be the induced scalar curvature of M . Then, at
every point of Σ,

〈ν, η〉HHΣ ≥
R

2
+

n

2(n− 1)
〈ν, η〉2H2

Σ

with the equality at a point in Σ if and only if (M,Σ) satisfies the
following two conditions at the point:

(i) Σ ⊂ Rn is umbilic, with the principal curvature κ;
(ii) M ⊂ Rn+1 has at most two distinct principal curvatures, and one

of them is equal to 〈ν, η〉κ, with multiplicity at least n− 1.

3. Proof of Theorem 3

Notation. Let M be a hypersurface in Euclidean space and let int(M)
be the set of interior points in M , i.e., int(M) = M \ ∂M . The set of
interior geodesic points is given by

M0 = {p ∈ int(M) : (Aij) = 0 at p}. (3.1)
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A classical result of R. Sacksteder [17, Lemma 6] characterizes the
set of geodesic points. Although he proved the statement for complete
hypersurfaces, the statement can be easily generalized to hypersurfaces
with boundary, see also [12, Lemma 3.8] and [13, Lemma 4.5]. In
particular, in the later reference we showed the analogous statement
for hypersurfaces in Sn+1 with boundary.

Lemma 3.1. Let M be a Cn+1 hypersurface in Rn+1, and let M ′
0 be

a connected component of M0. Then M ′
0 lies in a hyperplane which is

tangent to M at every point in M ′
0.

To prove Theorem 3, let us recall the following results in [12].

Definition 3.2. Let W be a subset in Rn. A point p ∈ ∂W is called
a convex point of W , if there exists an (n− 1)-sphere S in Rn passing
through p so that W \ {p} is contained in the open ball enclosed by S.
Here W denotes the closure of W in Rn. Note that a bounded subset
in Rn has at least one convex point.

Lemma 3.3 ([12, Lemma 3.5]). Let W be an open subset in Rn, not
necessarily bounded. Suppose that p ∈ ∂W is a convex point of W .
Denote by B(p) an open ball in Rn centered at p. Suppose that u ∈
C2(W ∩ B(p)) ∩ C1(W ∩ B(p)) and u = C, |Du| = 0 on ∂W ∩ B(p)
for some constant C. If the scalar curvature of the graph of u is non-
negative, then the mean curvature of the graph of u must change signs
in W ∩B(p), unless u ≡ C on W ∩B(p).

Lemma 3.4 ([12, Proposition 3.1]). Let W be an open subset in Rn,
not necessarily bounded. Let p ∈ ∂W , and denote by B(p) a small open
ball in Rn centered at p. Suppose that f ∈ C2(W∩B(p))∩C1(W∩B(p))
satisfies

H(Df,D2f) ≥ 0 in W ∩B(p)

f = C, |Df | = 0 on ∂W ∩B(p),

for some constant C. Then either f ≡ C in W ∩B(p), or

{x ∈ W ∩B(p) : f(x) > C} 6= ∅.

Definition 3.5. Let N be an open manifold and N1 and N2 be two
nonempty disconnected open subsets of N . For a closed subset E in
N , we say that E separates N1 and N2 in N , if there exists an open
neighborhood V of E in N so that V \ E = N1 ∪N2.

Proof of Theorem 3. Denote by M the graph of f . First notice
that by the Gauss equation the condition R ≥ 0 implies that the set of
geodesic points M0 equals {p ∈ int(M) : H = 0 at p}. Suppose on the
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contrary that the mean curvature changes signs. Then, there exists
a connected component of M0, say M ′

0, which separates the regions
{p ∈ int(M) : H > 0 at p} and {p ∈ int(M) : H < 0 at p} in M . By
Lemma 3.1, M ′

0 lies in a hyperplane Π tangent to M at M ′
0. M ′

0 does
not intersect with ∂M because |Df | = ∞. M can be represented as
the graph of a Cn+1-function u in an open neighborhood of M ′

0 in Π,
and u satisfies u = 0, |Du| = 0 on M ′

0.
We first claim that M ′

0 cannot be bounded. Suppose on the contrary
that M ′

0 is bounded. Because M ′
0 separates {p ∈ int(M) : H > 0 at p}

and {p ∈ int(M) : H < 0 at p} in M and locally M is the graph of
u over a neighborhood of M ′

0 in Π, M ′
0 also separates the regions in

Π. Let W be the open subset of Π enclosed by M ′
0. Then ∂W ⊂ M ′

0.
Note that W is bounded and hence has a convex point p ∈ ∂W . For a
small open ball B(p), we have either H > 0, or H < 0 everywhere in
W ∩B(p). However, it contradicts Lemma 3.3. We prove the claim.

Thus, M ′
0 is unbounded. By the assumption that f is asymptotically

flat, the upward unit normal vector of M converges to ∂n+1 at infinity.
Because M is tangent to the hyperplane Π at an unbounded set, we
must have lim|x|→∞ f(x) = C for some bounded constant C and Π =
{xn+1 = C}. Hence u = f − C in a neighborhood of M ′

0 in Π. Let ν
be the upward unit normal vector field on M

ν =
(−Df, 1)√
1 + |Df |2

at (x, f(x)) ∈M.

Because M ′
0 separates {p ∈ int(M) : H > 0 at p} and {p ∈ int(M) :

H < 0 at p} in M , the set {p ∈ int(M) : H > 0 at p} is non-empty
near M ′

0. By Lemma 3.4, the level set {x : f(x) = C+ε} has non-empty
intersection with {p ∈ int(M) : H > 0 at p} for all ε > 0 sufficiently
small. Let ΣC+ε be a connected component of the level set which has
non-empty intersection with {p ∈ int(M) : H > 0 at p}. Note that
ΣC+ε is closed if ε 6= 0, and that H ≥ 0 at every point of ΣC+ε because
by the claim H can only change signs through an unbounded subset of
M0, which must lie on {xn+1 = C}. By Morse-Sard theorem, ΣC+ε is a
Cn+1 submanifold with |Df | > 0 for almost every ε. Let η = Df/|Df |
be a unit normal vector of ΣC+ε where C + ε is a regular value. For
ε > 0 sufficiently small, η points inward to the region enclosed by ΣC+ε

because f decreases to C at infinity. Let HΣC+ε
be the mean curvature

with respect to η. By Proposition 2.9, HΣC+ε
≤ 0 at every point of

ΣC+ε, which contradicts compactness of ΣC+ε. �
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4. Ellipticity and maximum principles

In this section, we will derive various maximum principles for the
scalar curvature equation. The scalar curvature equation of the graph-
ing function is fully nonlinear. Its linearization gives a second-order
differential equation, which, however, may not be elliptic in general.
An important step to establish the maximum principles is to explore
the (strict) ellipticity of the linearized scalar curvature equation.

Lemma 4.1. Let u be a C2 function and let R be the scalar curvature
of the graph of u. Then

∂R

∂uij
(Du,D2u) =

2√
1 + |Du|2

(
Hgij −

∑
k

Aikg
kj

)
.

Proof. By chain rule,

∂R

∂uij
=
∑
k,l

∂R

∂Akl

∂Akl
∂uij

=
∑
k,l

∂R

∂Akl

∂

∂uij

(∑
p

gkpApl

)

=
∑
k

∂R

∂Aki

gkj√
1 + |Du|2

= 2H
gij√

1 + |Du|2
− 2

∑
k

Aik
gkj√

1 + |Du|2
.

�

Proposition 4.2. Let u be a C2 function, and let R and H be the
scalar curvature and mean curvature of the graph of u, respectively. If
R ≥ 0 and H ≥ 0, then the matrix

(
Hgij −

∑
k A

i
kg

kj
)

is semi-positive
definite.

Proof. Because Hgij−
∑

k A
i
kg

kj =
∑

k(Hδ
i
k−Aik)gkj and (gkj) is posi-

tive definite, it suffices to prove that (Hδik−Aik) is semi-positive definite.
By rotating the coordinates, we assume (Aik) = diag(λ1, . . . , λn). Then

(Hδik − Aik) = diag(σ1(A|1), . . . , σn(A|n)).

By Proposition 2.8, because H = σ1(A) ≥ 0 and R = 2σ2(A) ≥ 0, we
have σ1(A|k) ≥ 0 for all k = 1, . . . , n. �

Theorem 4.3 (Strong maximum principle for the interior point). Let
Ω be a connected open subset in Rn. Suppose u, v ∈ C2(Ω), u ≥ v in
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Ω, and u, v satisfy

R(Du,D2u) = 0, R(Dv,D2v) ≥ 0,

H(Du,D2u) ≥ 0, and H(Dv,D2v) ≥ 0 in Ω.

We assume that either u or v satisfies
(
Hgij −

∑
k A

i
kg

kj
)

being positive
definite in Ω. If u = v at some point in Ω, then u ≡ v in Ω.

Proof. Let R(p, ξ) ∈ C1(Rn × Rn×n) be the scalar curvature operator.

0 ≥ R(Du,D2u)−R(Dv,D2v)

= R(Du,D2u)−R(Du,D2v) +R(Du,D2v)−R(Dv,D2v)

=
∑
i,j

aij(uij − vij) +
∑
i

bi (ui − vi).

where

bi =

∫ 1

0

∂R

∂pi
(tDu+ (1− t)Dv,D2v) dt

and by Lemma 4.1

aij =

∫ 1

0

∂R

∂ξij
(Du, tD2u+ (1− t)D2v) dt

=
1√

1 + |Du|2

((
H(Du,D2u)gij(Du)−

∑
k

Aik(Du,D
2u)gkj(Du)

)
+
(
H(Du,D2v)gij(Du)−

∑
k

Aik(Du,D
2v))gkj(Du)

))
.

If u = v at p ∈ Ω, then Du = Dv at p and (aij) is positive definite at
p, by assumption and Proposition 4.2. By continuity, (aij) is positive
definite in an open neighborhood Ω′ of p in Ω. Then by the standard
strong maximum principle, u ≡ v in Ω′. Hence, the set {p ∈ Ω : u(p) =
v(p)} is open and closed. Because Ω is connected, we prove that u ≡ v
in Ω. �

Theorem 4.4 (Strong maximum principle for the boundary point).
Let Ω1,Ω2 be connected open sets in Rn such that Ω1 ⊂ Ω2. Suppose
that p ∈ ∂Ω1 ∩ ∂Ω2 6= ∅ and ∂Ω1, ∂Ω2 are C1 near p.

Let u ∈ C2(Ω1) ∩ C0(Ω1), v ∈ C2(Ω2) ∩ C0(Ω2). Suppose that the
graphs of u, v are C2 hypersurfaces up to boundary which satisfy

R(Du,D2u) = 0, R(Dv,D2v) ≥ 0

H(Du,D2u) ≥ 0, and H(Dv,D2v) ≥ 0 in Ω1.

We also assume that either u or v satisfies
(
Hgij −

∑
k A

i
kg

kj
)

be-
ing positive definite in Ω1. If u ≥ v ≥ 0 in Ω1 and u|∂Ω1∩Br(p) =
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v|∂Ω2∩Br(p) = 0 for some open ball centered at p of radius r with |Du(x)|,
|Dv(x)| → ∞ as x→ p ∈ ∂Ω1 ∩ ∂Ω2, then u ≡ v in Ω1.

Proof. Let Π be the vertical hyperplane in Rn+1 so that Π is tangent to
∂Ω1×{xn+1-axis} at p×{xn+1-axis}. The graphs of u, v near p can be
locally represented as the graphs of some functions ũ, ṽ over a subset
of Π, say ũ, ṽ ∈ C2(D × [0, ε]) where p ∈ int(D) ⊂ {xn+1 = 0} and
D × [0, ε] ⊂ Π. Moreover, ũ and ṽ satisfy ũ ≥ ṽ in D × [0, ε], ũ = ṽ
and ∂n+1ũ = ∂n+1ṽ = 0 at p ∈ D × {0}, and

R(Dũ,D2ũ) = 0, R(Dṽ,D2ṽ) ≥ 0

H(Dũ,D2ũ) ≥ 0, and H(Dṽ,D2ṽ) ≥ 0 in D × [0, ε].

Either ũ or ṽ has
(
Hgij −

∑
k A

i
kg

kj
)

being positive definite in D×[0, ε].
As analyzed in the proof of Theorem 4.3, (ũ− ṽ) satisfies

0 ≥
∑
i,j

aij(ũij − ṽij) +
∑
i

bi(ũi − ṽi),

where (aij) is positive definite in D × [0, ε] with a possibly smaller ε.
Then by the standard Hopf boundary point lemma, ũ = ṽ at some
interior points of D× [0, ε]. Hence u = v at some interior points in Ω1,
and by Theorem 4.3, u ≡ v everywhere in Ω1. �

To prove Theorem 4, we need the following version of the strong
maximum principle for the boundary point, where the domains of u
and v are complement to each other. The proof is nearly identical to
the proof of Theorem 4.4, so we omit it.

Theorem 4.5. Let Ω be an open subset in Rn. Let p ∈ ∂Ω and consider
the open ball Br(p) centered at p of radius r for some r > 0 small.

Suppose ∂Ω∩Br(p) is C1. Let u ∈ C2(Br(p)\(Ω ∩Br(p)))∩C0(Br(p)\
(Ω ∩ Br(p))), v ∈ C2(Ω ∩ Br(p)) ∩ C0(Ω ∩Br(p)) and u ≤ 0, v ≤ 0.
Suppose that the graphs of u, v are C2 hypersurfaces up to boundary
which satisfy

R(Du,D2u) = 0, R(Dv,D2v) = 0

H(Du,D2u) ≤ 0, and H(Dv,D2v) ≥ 0.

We also assume that the matrix
(
Hgij −

∑
k A

i
kg

kj
)

of u is negative
definite. If u|∂Ω∩Br(p) = v|∂Ω∩Br(p) = 0. then |Du(x)| and |Dv(x)|
cannot both tend to ∞ as x→ p ∈ ∂Ω.

Theorem 4.6 (Global strong maximum principle). Let Ω be a bounded
subset (not necessarily connected) in Rn, and let v ∈ C2(Rn \ Ω) be
asymptotically flat. We assume that the graph of v satisfies R = 0
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and H ≥ 0 in Rn \ Ω. Let h be the Schwarzschild solution given by
Proposition 2.6. Then there exists r � 1 so that, for any r2 > r1 ≥ r,

max
Br2\Br1

(h− v) = max
Sr2∪Sr1

(h− v)

min
Br2\Br1

(h− v) = min
Sr2∪Sr1

(h− v).

If (h − v) attains its maximum or minimum at an interior point in
Br2 \Br1, then (h− v) must be a constant in Br2 \Br1.

Proof. As computed in the proof of Theorem 4.3, we have

0 = R(Dh,D2h)−R(Dv,D2v)

=
∑
i,j

aij(hij − vij) +
∑
i

bi (hi − vi).

where

aij =
1√

1 + |Dh|2
∑
k

(
H(Dh,D2h)δik − Aik(Dh,D2h)

+H(Dh,D2v)δik − Aik(Dh,D2v)

)
gkj(Dh).

We shall prove that (aij) is positive definite in Rn \Br for r � 1. Then
the lemma follows directly from the standard maximum principles. Be-
cause (gkj) is positive definite, we can prove the positivity of (aij) by
showing that the matrix

(H(Dh,D2h)δik − Aik(Dh,D2h) +H(Dh,D2v)δik − Aik(Dh,D2v))
(4.1)

is positive definite. By direct computation,

H(Dh,D2v)δik − Aik(Dh,D2v)

= H(Dv,D2v)δik − Aik(Dv,D2v) +O(|Dv|2|D2v|+ |Dh|2|D2h|)
= H(Dv,D2v)δik − Aik(Dv,D2v) + o

(
r(−3n+2)/4

)
,

where r = |x| and we use the asymptotic flatness of h and v. By Propo-
sition 4.2, (H(Dv,D2v)δik − Aik(Dv,D2v)) is semi-positive definite. By
Proposition 2.7,(

H(Dh,D2h)δik − Aik(Dh,D2h)
)
≥ n− 2

2

√
2mr−n/2I.

The right hand side above is positive enough to absorb the error term
o(r(−3n+2)/4) if r � 1. Hence (4.1) is positive definite. �
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5. Proofs of Theorem 2 and Theorem 4

We need the the following elementary inequalities. The first inequal-
ity is a special case of the Alexandrov-Fenchel inequalities. The clas-
sical Alexandrov-Fenchel inequalities were proven for convex domains.
It has been generalized to star-shaped domains [10].

Proposition 5.1 ([10]). Let Ω ⊂ Rn be star-shaped and let Σ = ∂Ω.
Denote by HΣ the mean curvature of Σ with respect to the inward unit
normal vector. Then

1

2(n− 1)ωn−1

∫
Σ

HΣ dσ ≥
1

2

(
|Σ|
ωn−1

)n−2
n−1

with equality if and only if Σ is an (n− 1)-sphere.

Proposition 5.2. Let a1, a2, . . . , ak be non-negative real numbers and
0 ≤ β ≤ 1. Then

k∑
i=1

aβi ≥
( k∑

i=1

ai

)β
.

If 0 ≤ β < 1, the equality holds if and only if at most one of ai is
non-zero.

Proof. Without loss of generality, we assume k = 2. We shall prove
that xβ + yβ ≥ (x+ y)β if 0 ≤ β ≤ 1 and x, y ≥ 0. Fix β, x and define
w(y) = xβ + yβ − (x+ y)β. Then w(0) = 0 and

w′(y) = β
(
yβ−1 − (x+ y)β−1

)
≥ 0 for all y ≥ 0.

Hence w(y) ≥ 0 for all y ≥ 0 with w(y) = 0 if and only if x = 0, or
y = 0, or β = 1. �

Proof of Theorem 1 ([16]). The scalar curvature of the graph of f
has a divergence form (see also [12, Proposition 5.4])

R =
∑
j

∂j
∑
i

(
fiifj − fijfi
1 + |Df |2

)
.

Let Ωε be a bounded open set in Rn that contains Ω with Ωε → Ω as
ε→ 0, and let each connected component Σε

k of ∂Ωε be the level set of
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f . By applying the divergence theorem over Rn \ Ωε, we have

2(n− 1)ωn−1m

= lim
r→∞

∫
Sr

1

1 + |Df |2
∑
i,j

(fiifj − fijfi)
xj

|x|
dσ

=

∫
Rn\Ωε

Rdx−
∑
k

∫
Σεk

1

1 + |Df |2
∑
i,j

(fiifj − fijfi)ηj dσ

=

∫
Rn\Ωε

Rdx+
∑
k

∫
Σεk

|Df |2

1 + |Df |2
HΣεk

dσ,

where HΣεk
denotes the mean curvature of the level set Σε

k with respect
to the unit normal vector η pointing inward to the region enclosed by
Σε
k (cf. [12, Proof of Lemma 5.6]). Let ε tend to zero. Then each level

set Σε
k tends to the connected component Σk of ∂Ω and |Df | → ∞.

Therefore, we have

m =
1

2(n− 1)ωn−1

(∫
Rn\Ω

Rdx+
∑
k

∫
Σk

HΣk dσ

)

≥
∑
k

1

2(n− 1)ωn−1

∫
Σk

HΣk dσ

≥
∑
k

1

2

(
|Σk|
ωn−1

)n−2
n−1

(by Proposition 5.1)

≥ 1

2

(
|∂Ω|
ωn−1

)n−2
n−1

(by Proposition 5.2).

�

Corollary 5.3. Let Ω be an open and bounded subset (not necessarily
connected) in Rn, n ≥ 3, and let f ∈ C2(Rn \ Ω) ∩ C0(Rn \ Ω) be
asymptotically flat. We assume that the graph of f is a C2 hypersurface
up to boundary with non-negative scalar curvature. Suppose that each
connected component of Ω is star-shaped and each connected component
of ∂Ω is the level set of f with 〈Df(x), η(x)〉 → +∞ as x→ ∂Ω, where
η is the outward unit normal to the level sets of f . If

m =
1

2

(
|∂Ω|
ωn−1

)n−2
n−1

,

then R ≡ 0 in Rn \ Ω, and ∂Ω is connected and is a sphere of radius

(2m)
1

n−2 .
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The proof of Theorem 2 makes use the maximum principles proven
in Section 4. The case n = 3 or 4 is more subtle because the graphing
function of the Schwarzschild solution tends to infinity as |x| → ∞,
and difficulty arises when comparing two unbounded graphs. In that
case, instead of using the strong maximum principles Theorem 4.3 or
Theorem 4.4 directly, we first control the growth at infinity, by the
asymptotic flatness of the graph and Theorem 4.6.

Proof of Theorem 2. Suppose that the equality of the Penrose in-
equality holds. By Corollary 5.3, the scalar curvature of the graph
of f is identically zero everywhere and ∂Ω is a round sphere of ra-

dius (2m)
1

n−2 . By translating f , we assume that f = 0 on ∂Ω and
∂Ω = S

(2m)
1

n−2
⊂ {xn+1 = 0}. By Theorem 3, the mean curvature of

the graph of f must have a sign. Then by Proposition 2.9 and H∂Ω > 0
(with respect to inward unit normal), the mean curvature of the graph
of f is non-negative everywhere. In particular, this together with the
strong maximum principle for the mean curvature equation implies
that lim sup|x|→∞ f > 0. Hence, by the assumption of asymptotic flat-
ness, we have either lim|x|→∞ f(x) = C for some positive constant C
or lim|x|→∞ f(x) = +∞.

Let h be the function in Proposition 2.6 which gives the exterior
region of the Schwarzschild solution of mass m outside its minimal
boundary. By translating h, we assume that its minimal boundary is
S

(2m)
1

n−2
⊂ {xn+1 = 0}. We consider two cases, depending on the di-

mension n.

Case 1: n ≥ 5. In this case, lim|x|→∞ h(x) = C0 for some bounded
constant C0.

As explained above, either lim|x|→∞ f(x) = C for some bounded con-
stant C or lim|x|→∞ f(x) = +∞.

If C ≤ C0, we let uλ = h+λ for λ ≥ 0. For λ sufficiently large, uλ >
f . We then continuously decrease λ, until uλ = f at p ∈ Rn \B

(2m)
1

n−2

for the first time. If p is an interior point, uλ ≡ f by Theorem 4.3.
If p is a boundary point in S

(2m)
1

n−2
, uλ ≡ f by Theorem 4.4. Hence,

the graph of f is identical to the exterior region of the Schwarzschild
solution of mass m outside its minimal boundary.

If C ≥ C0 or lim|x|→∞ f(x) = +∞, we consider vλ = h−λ for λ ≥ 0.
Note that f > vλ for λ sufficiently large. We then continuously de-
crease λ until f = vλ for the first time. Then by either Theorem 4.3 or
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Theorem 4.4, we have f ≡ h in Rn \B
(2m)

1
n−2

.

Case 2: n = 3 or 4. (In this case, lim|x|→∞ h(x) =∞.)

We claim that either max|x|=r f(x) > h(r) or max|x|=r f(x) ≤ h(r)
for all r sufficiently large. Suppose that the first statement is false.
Then there exists a sequence of positive numbers {rk} with rk →∞ as
k →∞ so that max|x|=rk f(x) ≤ h(rk). Then by Theorem 4.6, we have
max|x|=r f(x) ≤ h(r) for all r sufficiently large. This proves the claim.

Suppose max|x|=r f(x) > h(r) for all r sufficiently large. By the
assumption min|x|=r f + C ≥ max|x|=r f(x) for r sufficiently large, we

have for all r ≥ (2m)
1

n−2

min
|x|=r

f(x) > h(r)− C ′,

for some constant C ′ > 0. Hence, f(x) > h(x) − C ′ for all x ∈ Rn \
B

(2m)
1

n−2
. We then continuously decrease C ′ until f(x) = h(x) − C ′

for the first time. Then either Theorem 4.3 or Theorem 4.4 implies
f(x) ≡ h(x), which leads a contradiction. Hence, max|x|=r f(x) ≤ h(r)
for all r sufficiently large. Then we can apply the argument as in Case
1 and show that f(x) ≡ h(x). �

Proof of Theorem 4. We argue by contradiction. Suppose there is a
complete Cn+1 hypersurface M of one end with zero scalar curvature
in Rn+1 which is identical to the Schwarzschild solution h (given in
Proposition 2.6) of m > 0 outside a compact set. We consider the
graph of h− λ for some constant λ > 0. For λ� 1, the graph of h− λ
has no intersection with M . Then we decrease λ until the graph of
h− λ touches M at a point p for the first time.

Note that by [12, Theorem 4] the mean curvature of M has a sign.
Then by Proposition 2.9 and the fact that the level set of M passing
through p is mean convex near p with respect to the inward unit normal,
the mean curvature of M near p (with respect to the unit normal vector
pointing away from the graph of h) is non-negative. Depending on that
p is either an interior point or a boundary point of the graph of h− λ,
we apply either Theorem 4.3 or Theorem 4.4 to conclude that M is
identical to the graph of h outside B

(2m)
1

n−2
over Rn. By translation,

we may assume that h = 0 over S
(2m)

1
n−2

. We consider the graph of −h
and the region of M near S

(2m)
1

n−2
. Note that M is graphical over an

open neighborhood of S
(2m)

1
n−2

in B
(2m)

1
n−2

(because the first contact
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point of the graph of h and M is at the graph of h). Then by applying
Theorem 4.5, we obtain a contradiction. �
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