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A. The rigidity of the Positive Mass Theorem states that the only com-
plete asymptotically flat manifold of nonnegative scalar curvature and zero mass
is Euclidean space. We study the stability of this statement for spaces that can
be realized as graphical hypersurfaces in En+1. We prove (under certain tech-
nical hypotheses) that if a sequence of complete asymptotically flat graphs of
nonnegative scalar curvature has mass approaching zero, then the sequence must
converge to Euclidean space in the pointed intrinsic flat sense. The appendix
includes a new Gromov-Hausdorff and intrinsic flat compactness theorem for
sequences of metric spaces with uniform Lipschitz bounds on their metrics.

1. I

The Positive Mass Theorem of Schoen-Yau and later Witten [SY79, Wit81]
states that any complete asymptotically flat manifold of nonnegative scalar curva-
ture has nonnegative ADM mass. Furthermore, if the ADM mass is zero, then the
manifold must be Euclidean space. The second statement may be thought of as a
rigidity theorem, and it is natural to consider the stability of this rigidity statement.
That is, if the ADM mass is small, in what sense can we say that the manifold is
“close” to Euclidean space? What topology is appropriate in this setting?

In [LS14a] the last two named authors conjectured that if a sequence of Rie-
mannian manifolds with nonnegative scalar curvature and no interior closed min-
imal surfaces has ADM mass approaching zero then regions in these spaces con-
verge in the intrinsic flat sense to Euclidean space. The intrinsic flat distance, dF ,
between oriented Riemannian manifolds with boundary was introduced by the last
named author and S. Wenger in [SW11] applying work of Ambrosio-Kirchheim
[AK00]. Under intrinsic flat convergence, thin regions of small volume disappear,
so it is well designed to study stability problems like this one where it is possi-
ble that increasingly thin gravity wells of increasingly small mass could persist as
the ADM mass converges to 0. The conjecture as stated in [LS14a] implies the
following conjecture.
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Conjecture 1.1 ( [LS14a] ). Let M j be asymptotically flat n-dimensional Riemann-
ian manifolds with nonnegative scalar curvature and no interior closed minimal
surfaces and either no boundary or the boundary is an outermost minimizing sur-
face. Fix an A0 > 0, and choose p j ∈ Σ j to lie on a special surface Σ j ⊂ M j such
that Voln−1(Σ j) = A0. If

(1) mADM(M j)→ 0

then (M j, p j) converges to Euclidean space (En, 0) in the pointed intrinsic flat
sense. That is, for almost every D > 0 we have

(2) dF
(
Bp j(D) ⊂ M j, B0(D) ⊂ En

)
→ 0.

The conjecture is deliberately vague as to the exact nature of the sets Σ j in the
conjecture. The last two named authors proved the conjecture in the rotationally
(i.e. spherically) symmetric case. They assume Σ j were rotationally symmetric
level sets [LS14a]. They provided an example of a sequence of manifolds with
increasingly thin wells to demonstrate that this conjecture is false if the points are
not carefully selected to avoid falling within wells. This example also demonstrates
that balls do not converge in the Gromov-Hausdorff sense or smooth sense to balls
in Euclidean space.

There are various types of stability results in the literature. H. Bray and F. Fin-
ster [BF02] used spinor methods and proved that if a complete three-dimensional
asymptotically flat manifold of non-negative scalar curvature has small mass and
bounded isoperimetric constant and curvature, then the manifold must be close to
Euclidean space in the sense that there is an upper bound for the L2 norm of the cur-
vature tensor over the manifold except for a set of small measure. This was general-
ized to higher dimensions by Finster and I. Kath [FK02]. Finster [Fin09] removed
the dependence on the isoperimetric constant and obtained the L2 bound of the cur-
vature tensor with the exception of a set of small surface area. J. Corvino [Cor05]
proved that a particular bound on the mass and sectional curvature of a three-
dimensional asymptotically flat manifold of nonnegative scalar curvature implies
the manifold is diffeomorphic to R3. Under the assumption of conformal flatness
and zero scalar curvature outside a compact set, the second author [Lee09] proved
that if a sequence of smooth asymptotically flat metrics of nonnegative scalar cur-
vature has mass approaching zero, then the sequence converges in smooth topology
to the Euclidean metric outside a compact set. Those results can be viewed as the
stability results in the region of the manifold where the curvature tensor is uni-
formly bounded.

Conjecture 1.1 addresses a different, and perhaps more challenging, aspect of
the stability problem, which intends to understand how the ADM mass controls the
region of the manifold where the curvature may be large. Until now the conjecture
has only been verified for rotationally symmetric spaces—an extremely restricted
class.

We now consider the much larger (but still fairly restricted) class of graphical
hypersurfaces of Euclidean space. For this class of asymptotically flat manifolds of
nonnegative scalar curvature, G. Lam [Lam11] proved the positive mass inequality
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in all dimensions, and the first named author and D. Wu [HW13] proved rigidity:
if the ADM mass is zero, then the hypersurface must be a hyperplane. Recently the
first two named authors proved a stability result for graphical hypersurfaces with
respect to the Federer-Fleming’s flat topology in En+1 [HL15]. However, even in
Euclidean space, the flat topology and intrinsic flat topology do not have a simple
relationship (see Example 2.8), so the result of [HL15] does not provide a special
case of the conjecture above, though it has a similar flavor. Since the flat topology
is extrinsic, that result is natural from the point of view of hypersurface geometry,
but it does not directly say anything about the underlying Riemannian manifolds.
The purpose of this work is to prove a stability result with respect to intrinsic flat
topology. We achieve this by taking the estimates used in [HL15] and combining
them with recent results of the last named author [Sor14].

We define our class of uniformly asymptotically flat graphical hypersurfaces of
En+1 with uniformly bounded depth and nonnegative scalar curvature as follows.
We first recall that the spatial n-dimensional Schwarzschild manifold (with bound-
ary) of mass m > 0 can be isometrically embedded into En+1 as the graph of a
smooth function defined on En r B((2m)1/(n−2)), with minimal boundary, such that
the boundary lies in the plane En × {0}. Explicitly, it is the graph of the function
S m(|x|) given in (56) where S m(r) =

√
8m(r − 2m) in dimension 3.

Definition 1.2. For n ≥ 3, r0, γ,D > 0, and α < 0, define Gn(r0, γ,D, α) to be the
space of all smooth complete Riemannian manifolds of nonnegative scalar curva-
ture, (Mn, g), possibly with boundary, that admit a smooth Riemannian isometric
embedding Ψ : M −→ En+1 such that for some open U ⊂ B(r0/2) ⊂ En, the image
Ψ(M) is the graph of a function f ∈ C∞(En r U) ∩C0(En r U):

(3) Ψ(M) =
{
(x, f (x)) : x ∈ En r U

}
with empty or minimal boundary:

(4) either ∂M = ∅ and U = ∅,

(5) or f is constant on each component of ∂U and lim
x→∂U

|D f (x)| = ∞,

and for almost every h, the level set

(6) f −1(h) ⊂ En is strictly mean-convex and outward-minimizing,

where strictly mean-convex means that the mean curvature is strictly positive, and
outward-minimizing means that any region of En that contains the region enclosed
by f −1(h) must have perimeter at least as large asHn−1( f −1(h)).

In addition we require uniform asymptotic flatness conditions:

(7) |D f | ≤ γ for |x| ≥ r0/2 and lim
x→∞
|D f | = 0.

If n ≥ 5, we require that f (x) approaches a constant as x → ∞. If n = 3 or 4, we
require that the graph is asymptotically Schwarzschild:

(8) ∃Λ ∈ R such that | f (x) − (Λ + S m(|x|))| ≤ γ|x|α for |x| ≥ r0.



4 HUANG, LEE, AND SORMANI

Finally we require that the regions

(9) Ω = Ω(r0) = Ψ−1(B(r0) × R) and Σ = Σ(r0) = ∂Ω(r0) r ∂M

have bounded depth

(10) Depth(Ω,Σ) = sup {dM(p,Σ) : p ∈ Ω} ≤ D.

M

∂M

Br0 × R

Depth(Ω,Σ)

Ω(r0)

Σ(r0)

F 1

This class of asymptotically flat manifolds contains many nontrivial examples.
For example, we may start with an arbitrary rotationally symmetric asymptotically
flat metric with nonnegative scalar curvature and no closed interior minimal sur-
faces. Such a manifold embeds as a graph into Euclidean space. Then we may
perturb it as a graph slightly in any region when the scalar curvature is strictly
positive.

Our first main result is the following.

Theorem 1.3. Let n ≥ 3, r0, γ,D > 0, α < 0, and r ≥ r0. For any ε > 0, there
exists a δ = δ(ε, n, γ,D, α, r) > 0 such that if M ∈ Gn(r0, γ,D, α) has ADM mass
less than δ, then

(11) dF
(
Ω(r) ⊂ M , B(r) ⊂ En )

< ε

and

(12) |Vol(Ω(r)) − Vol(B(r))| < ε

where B(r) is the ball of radius r around the origin, and Ω(r) := Ψ−1(B(r) × R)
using the notation of the above definition.

The definition of Gn(r0, γ,D, α) essentially encodes the hypotheses of Theo-
rem 1.3, so we take a moment to discuss the conditions in Gn(r0, γ,D, α). The
condition U ⊂ B(r0/2) ensures that ∂M and Σ(r), which together comprise ∂Ω(r),
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do not touch each other. Conditions (7) and (8) are the asymptotic flatness con-
ditions that we need for our proof. Note that they all follow from the fairly nat-
ural (but much stronger) requirement that the f ’s are uniformly asymptotically
Schwarzschild up to first order.

The geometric conditions on the level sets in (6) are needed in order to apply the
estimates of the first two authors in [HL15] and are discussed there. In particular,
the first named author and Wu have proven that other conditions imply that the level
sets are always weakly mean-convex (see [HW13, Theorem 4, Theorem 2.2] and
[HW15, Theorem 3]). We also use the outward minimizing property to estimate
volumes in the proof of Theorem 1.3.

Condition (10) prevents the possibility of “arbitrarily deep gravity wells”. The
notion of depth was introduced by the last named author and P. LeFloch in [LS14b]
where they proved a compactness theorem for a family of rotationally symmetric
regions of nonnegative scalar curvature. Here we use this condition combined
with the volume estimates to apply a compactness theorem of S. Wenger proven in
[Wen11].

Applying Theorem 1.3 and key results concerning intrinsic flat convergence we
obtain the following pointed convergence theorem which proves the conjecture
for M ∈ Gn(r0, γ,D, α) where Σ j are preimages of the intersections of the graph
Ψ j(M j) with the cylinder at r0:

Theorem 1.4. Let n ≥ 3, r0, γ,D > 0, and α < 0. Let M j ∈ Gn(r0, γ,D, α) be a
sequence such that

(13) mADM(M j)→ 0.

If p j ∈ M j is a sequence of points such that p j ∈ Σ(r0) := Ψ−1(∂B(r0) × R), then
(M j, p j) converges in the pointed intrinsic flat sense to En. That is, for almost every
R > 2r0 + D,

(14) dF
(

Bp j(R) ⊂ M j , B(R) ⊂ En
)
→ 0

and

(15) Vol(Bp j(R))→ Vol(B(R)).

The paper begins with background material in Section 2. We first review Federer-
Fleming integral currents and flat convergence in Euclidean space [FF60] and
Ambrosio-Kirchheim integral currents on metric spaces [AK00]. Then we review
key definitions and theorems of the third author and Wenger concerning intrinsic
flat convergence [SW11][Wen11][Sor14] and work of Gromov and Grove-Petersen
on Gromov-Hausdorff convergence [Gro81b][GP91]. We close with a review of
prior work of the first two named authors on graph manifolds with small ADM
mass [HL15].

In Section 3 we apply the volume and depth bounds combined with Wenger’s
Compactness Theorem [Wen11] and an intrinsic flat Arzela-Ascoli Theorem of the
third author [Sor14] to prove Theorem 3.1: if M j ⊂ Gn(r0, γ,D, α) and Ω j(r) =
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Ψ−1
j (B(r) × R) for fixed r ≥ r0 then a subsequence converges

(16) Ω j(r)
F
−→ Ω∞(r)

with a Lipschitz map Ψ∞ : Ω∞(r)→ En+1. Thus ∂Ω j(r)→ ∂Ω∞(r).
In Section 4 we use the fact that the manifolds are graphs and have ADM mass

converging to 0 applying prior work of the first two named authors [HL15]. In
Lemma 4.1 we prove that the inner boundaries disappear and the outer boundaries
converge:

(17) Σ j(r)
F
−→ Σ∞(r) = ∂Ω∞(r)

In Lemmas 4.3 and 4.2 we bound the volumes of Ω j(r) from above and below:
showing Vol(Ω j) → Vol(B(r)). In Lemma 4.5 we prove that Ψ∞(Ω∞) lies in a
Euclidean disk.

In Section 5 we apply (7) which controls the gradient of the graph near the
boundary of Σ j to prove that the outer boundaries, Σ j(r) converge in the bi-Lipschitz
sense to their limit Σ∞(r). This requires a new highly technical Theorem 8.1 con-
cerning intrinsic flat and Gromov-Hausdorff convergence that is proven in the ap-
pendix. Note that one consequence of this section is that none of the points on Σ j
are disappearing in the intrinsic flat limit (even though points within Ω j may be
disappearing in the limit).

In Section 6 we prove Theorem 1.3 by combining the above results. In Section 7
we prove Theorem 1.4 by applying Theorem 1.3. Note that the final steps in the
proofs of these two theorems apply far more generally than to graph manifolds as
long as one can prove the lemmas leading up to these results in the more general
case.

1.1. Acknowledgements. The authors appreciate the Mathematical Sciences Re-
search Institute for the wonderful research environment there and the opportunity
to begin working together on this project. We are grateful to Jim Isenberg, Yvonne
Choquet-Bruhat, Piotr Chrusciel, Greg Galloway, Gerhard Huisken, Sergiu Klain-
erman, Igor Rodnianski, and Richard Schoen for their organization of the program
in General Relativity at MSRI in Fall 2013. We also thank the referee for careful
reading and for helpful comments.

2. B

Here we provide background stating the key results and notions needed from
prior work that we apply in this paper. We begin with a review on Federer-
Fleming’s notion of integral currents on Euclidean space and flat convergence. In
particular we review the flat convergence of such graphs to a plane.

Next we review intrinsic flat convergence. We begin with Ambrosio-Kirchheim’s
notion of integral currents on complete metric spaces and a review of their semicon-
tinuity of mass [AK00]. We then review the work of the third author with Wenger
which introduced integral current spaces and the intrinsic flat distance [SW11] and
key theorems about the intrinsic flat distance applied in this paper from [SW11],
[Wen11] and [Sor14].
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Finally we present the properties of asymptotically graphs and the key results
from work of the first two authors [HL15] studying graphical hypersurfaces of
En+1 with nonnegative scalar curvature and small ADM mass.

2.1. Flat Convergence of Federer and Fleming. The notion of an integral cur-
rent on EN and its mass and the flat distance between integral currents was first
defined by Federer and Fleming in 1960 [FF60]. The Federer-Fleming notion of
mass is a weighted volume defined for integral currents (which are weighted ori-
ented submanifolds built from countable collections of Lipschitz submanifolds). It
is unrelated to ADM mass.

Any embedded n-submanifold of EN , ϕ : Mn → EN , can be thought of as a
functional T on n-forms (i.e. a current) as follows. For each n-form ω of compact
support,

(18) T (ω) := ϕ#[M]ω =

∫
M
ϕ∗ω.

This concept can be extended to weighted oriented submanifolds built from count-
able collections of Lipschitz submanifolds ϕi : Ai ⊂ E

n → EN with integer weights
ai ∈ Z to define an integer rectifiable current:

(19) T (ω) :=
∞∑

i=1

aiϕi#[Ai]ω =

∞∑
i=1

ai

∫
Ai

ϕ∗iω.

The boundary of a current is defined by

(20) ∂T (ω) = T (dω)

so that in particular for a smooth submanifold with boundary:

(21) ∂[M] = [∂M].

An integral current is an integer rectifiable current whose boundary is also an in-
teger rectifiable current. They denote the space of n-dimensional integral currents
in EN to be In(EN). They include the 0 current whose action on any form satisfies
0(ω) = 0.

Given T1,T2 ∈ In(EN) and an open subset O ⊂ EN , the flat distance between T1
and T2 in O is defined to be

(22) dFO(T1,T2) = inf {M(A) + M(B) : T1 − T2 = A + ∂B in O}

where the infimum is taken over all A ∈ In(O) and all B ∈ In+1(O), and M is the
mass of each of these integral currents in O. This is not Federer-Fleming’s notation
but we use this because it is simpler to extend this notation.

Federer and Fleming proved a compactness theorem stating that if M(Ti) ≤ V0,
M(∂Ti) ≤ A0, and spt Ti ⊂ K compact, then a subsequence of Ti converges in
the weak and flat sense to an integral current of the same dimension (possibly the 0
current). This theorem is one of the foundational theorems of the field of Geometric
Measure Theory.
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The flat distance is an extrinsic notion, not an intrinsic one. For example, if we
consider the graphs:

(23) {(x, fk(x)) : x ∈ [0, π]} ∈ E2

with fk(x) piecewise linear with slope ±1 connecting the points

(24) (0, 0), (1/(2k), 1/(2k)), (2/(2k), 0), (3/(2k), 1/(2k)), ..., (1, 0)

then we have corresponding integral currents Tk of weight 1 with

(25) M(Tk) =
√

2

and dF(Tk,T∞) → 0 where T∞ is the current corresponding to the graph of f∞
identically equal to 0. This can be seen by taking Ak = 0 and Bk to be the sum of
the 2 dimensional triangular regions lying between the graphs of fk and f . Observe
that

(26) M(T∞) = 1.

In fact, Federer-Fleming proved lower semicontinuity of mass [FF60]:

(27) lim inf
j→∞

M(T j) ≥M(T∞).

However, note that in this example the intrinsic geometry of each Tk is that of a
line segment of length

√
2, while the limit space T∞ is a line segment of length 1.

2.2. Review of Ambrosio-Kirchheim Integral Currents. In [AK00], Ambrosio
and Kirchheim extended the notion of integral currents on EN to integral currents
on a complete metric space Z denoted In(Z). Their notion of a current T acts on
n + 1 tuples of Lipschitz functions ( f , π1, ..., πn) rather than differential forms, so
that a rectifiable current is defined by a countable collection of bi-Lipschitz charts
ψi : Ai → Z (where Ai are Borel sets in En) as follows

(28) T ( f , π1, ..., πn) =

∞∑
i=1

aiψi#[Ai]( f , π1, ..., πn)

where the push forward is defined

(29) ψi#[Ai]( f , π1, . . . , πn) =

∫
Ai

f ◦ ψi d(π1 ◦ ψi) ∧ · · · ∧ d(πn ◦ ψi).

Ambrosio-Kirchheim define mass in a more complicated way than Federer-
Fleming so that they are able to prove lower semicontinuity of mass. They prove
the following useful relationship between mass and Hausdorff measure for currents
with weight 1:

(30) CnHn(set T ) ≤M(T ) ≤ C′nHn(set T )

where Cn,C′n are precise dimension dependent constants and set(T ) is the collec-
tion of points of positive density with respect to T . In addition if T is an n dimen-
sional integral current on (Z, d) and we rescale d by λ > 0 then

(31) M(Z,λd)(T ) = λnM(Z,d)(T ).
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More generally, if d′ ≥ d then

(32) M(Z,d′)(T ) ≥M(Z,d)(T ).

They define boundary:

(33) ∂T ( f , π1, ..., πn) = T (1, f , π1, ..., πn).

The space of integral currents, denoted In(Z), is the collection of integer rectifiable
currents whose boundaries are integer rectifiable. Again there is the 0 integral
current in each dimension. The notion of flat distance naturally extends, which
we denote as dZ

F(T1,T2). They generalized Federer and Fleming’s compactness
theorem to this setting replacing O with the requirement that Z is compact.

2.3. Gromov-HausdorffConvergence. In order to define Gromov-Hausdorff and
intrinsic flat convergence we need the following notion:

Definition 2.1. A map ϕ : X → Y between metric spaces, (X, dX) and (Y, dY ), is a
metric isometric embedding iff it is distance preserving:

(34) dY (ϕ(x1), ϕ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

It is of crucial importance that this does not agree with the Riemannian notion
of an isometric embedding. See [LS14a] for a discussion of the distinction.

Although our main results do not directly involve Gromov-Hausdorff conver-
gence, it is applied significantly within the paper.

Definition 2.2 (Gromov). The Gromov-Hausdorff distance between two compact
metric spaces (X, dX) and (Y, dY ) is defined as

(35) dGH (X,Y) := inf dZ
H (ϕ (X) , ψ (Y))

where the inf is taken over all complete metric space Z and metric isometric em-
beddings ϕ : X → Z and ψ : Y → Z. The Hausdorff distance in Z is defined
as

(36) dZ
H (A, B) = inf {ε > 0 : A ⊂ Tε (B) and B ⊂ Tε (A)} .

Gromov proved that this is indeed a distance on compact metric spaces in the
sense that dGH (X,Y) = 0 iff there is an isometry between X and Y [Gro81b]. He
also proved the following embedding theorem in [Gro81a]:

Theorem 2.3 (Gromov). If a sequence of compact metric spaces, X j, converges in
the Gromov-Hausdorff sense to a compact metric space X∞,

(37) X j
GH
−→ X∞

then in fact there is a compact metric space, Z, and isometric embeddings ϕ j :
X j → Z for j ∈ {1, 2, ...,∞} such that

(38) dZ
H

(
ϕ j(X j), ϕ∞(X∞)

)
→ 0.

This theorem allows one to define converging sequences of points:

Definition 2.4. One says that x j ∈ X j converges to x∞ ∈ X∞, if there is a common
space Z as in Theorem 2.3 such that ϕ j(x j)→ ϕ∞(x) as points in Z.
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One can apply Theorem 2.3 to see that for any x∞ ∈ X∞ there exists x j ∈ X j
converging to x∞ in this sense. Theorem 2.3 also implies the following Gromov-
Hausdorff Bolzano-Weierstrass Theorem:

Theorem 2.5 (Gromov). Given compact metric spaces, X j
GH
−→ X∞, and x j ∈ X j,

there is a subsequence, also denoted x j, that converges to some point x∞ ∈ X∞ in
the sense described above.

Gromov’s embedding theorem can also be applied in combination with other
extension theorems to obtain the following Gromov-Hausdorff Arzela-Ascoli The-
orem. See also the appendix of a paper of Grove-Petersen [GP91] for a detailed
proof and prior work of the last named author for a more general statement [Sor04].

Theorem 2.6 (Gromov, Grove-Petersen). Given compact metric spaces X j
GH
−→ X∞

and Y j
GH
−→ Y∞ and equicontinuous functions f j : X j → Y j in the sense that

(39) ∀ε > 0 ∃δε > 0 such that dX j(x, x′) < δε =⇒ dY j( f j(x), f j(x′)) ≤ ε,

there exists a subsequence, also denoted f j : X j → Y j, which converges to a
continuous function f∞ : X∞ → Y∞ in the sense that there exists common compact
metric spaces Z,W, and metric isometric embeddings ϕ j : X j → Z, ψ j : Y j → W
such that

(40) lim
j→∞

ψ j( f j(x j)) = ψ∞( f∞(x∞)) whenever lim
j→∞

ϕ j(x j) = ϕ∞(x∞).

Furthermore, if Lip( f j) ≤ K then Lip( f∞) ≤ K.

Examples of Gromov-Hausdorff limits of rotationally symmetric manifolds with
nonnegative scalar curvature and ADM mass converging to 0 are provided in work
of the second and third authors [LS14a]. In particular, they need not converge to
Euclidean space in the Gromov-Hausdorff sense.

2.4. Intrinsic Flat Convergence. In [SW11], the third named author and Wenger
applied Ambrosio and Kirchheim’s notion of an integral current to define integral
current spaces (X, d,T ), with T ∈ In(X) and set(T ) = X where X is the completion
of X and set(T ) is the set of positive density for T . This integral current structure,
T , can be represented by a collection of bi-Lipschitz charts

(41) ψi : Ai ⊂ E
n −→ Ui ⊂ X

such that

(42) Hn

X r
∞⋃

i=1

ψi(Ai)

 = 0,

with integer valued Borel weight functions θi : Ai → Z. So integral current spaces
are countablyHn rectifiable metric spaces endowed with oriented charts and inte-
ger weights. In particular, oriented Riemannian manifolds with finite volume can
be regarded as integral current spaces. There is also the 0 integral current space in
each dimension. The 0 integral current space has current structure 0 and no metric
space.
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Riemannian manifolds of finite volume are integral current spaces where (X, d)
is the manifold with the intrinsic Riemannian distance function defined using in-
fimum over the lengths of curves lying within the manifold. The integral current
structure T is defined by

(43) T ( f , π1, ..., πn) =

∫
M

f dπ1 ∧ · · · ∧ dπn.

Given an integral current space M = (X, d,T ), we can define ∂M = (set(∂T ), d, ∂T ).
Note that the boundary is endowed with the restricted metric from the metric com-
pletion of the original space, X̄, and that its metric space is a subset of X̄. When
M is a Riemannian manifold with boundary, ∂M is the manifold boundary of M
endowed with the restricted metric.

Wenger and the third named author used Ambrosio-Kirchheim’s notion of M(T )
and the push forward ϕ#T to define the intrinsic flat distance as follows.

Definition 2.7 ([SW11]). Given two n-dimensional precompact integral current
spaces M1 = (X1, d1,T1) and M2 = (X2, d2,T2), the intrinsic flat distance between
the spaces is defined by

(44) dF (M1,M2) = inf
{
dZ

F(ϕ1#T1, ϕ2#T2) : ϕ j : X j → Z
}

where the infimum is taken over all complete metric spaces Z and all metric iso-
metric embeddings ϕ j : X j → Z:

(45) dZ(ϕ j(x), ϕ j(x′)) = dX j(x, x′) ∀x, x′ ∈ X j.

Note the similarity to the definition of the Gromov-Hausdorff distance with the
distinction being that the Hausdorff distance between subsets of compact met-
ric spaces, Z, has been replaced by the flat distance between integral currents in
complete metric spaces, Z. Two precompact integral current spaces, Mi, have
dF (M1,M2) = 0 iff there is a current preserving isometry between the spaces.
If Mi are Riemannian manifolds with weight 1, this means there is an orientation
preserving isometry between them.

Example 2.8. The intrinsic flat distance is an intrinsic notion not an extrinsic
notion. In the prior section we observed that graphs f j : [0, 1] → E2 defined in
(23) converge in the flat sense to the graph of f∞ which is identically 0. These
graphs are intrinsically isometric to Riemannian manifolds M j = [0,

√
2], as seen

using the embeddings Ψ j(s) = (s/
√

2, f j(s/
√

2)). Since the Ψ j are not metric
isometric embeddings, we cannot use these embeddings into Z = E2 to determine
the intrinsic flat limit of the M j. The intrinsic flat limit is M∞ = [0,

√
2] which can

be seen clearly just by taking the identity map into Z = [0,
√

2] and taking A j = 0
and B j = 0.

In [LS14a], the last named authors prove that rotationally symmetric manifolds
with nonnegative scalar curvature whose ADM mass converges to 0 that have no
closed interior minimal surfaces converge to Euclidean space in the pointed intrin-
sic flat sense. The proof there explicitly constructs a sequence of metric spaces Z j
and integral currents A j and B j in Z j such that ∂B j + A j = ϕ1#T1 − ϕ2#T2. In the
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Appendix we prove a new theorem which allows one to determine the intrinsic flat
limits of certain sequences of integral current spaces using explicit Z j.

2.5. Review of Theorems about Intrinsic Flat Convergence. In this paper we
will prove our results by applying the following key theorems.

Wenger and the third named author proved the following embedding theorem for
convergent sequences of integral current spaces in [SW11]. The theorem applies
Ambrosio-Kirchheim’s lower semicontinuity of mass [AK00].

Theorem 2.9 ([SW11]). If a sequence of integral current spaces, M j =
(
X j, d j,T j

)
,

converges in the intrinsic flat sense to an integral current space, M∞ = (X∞, d∞,T∞),
then there is a separable complete metric space, Z, and metric isometric embed-
dings ϕ j : X j → Z such that ϕ j#T j flat converges to ϕ∞#T∞ in Z and thus converge
weakly as well.

In particular we have lower semicontinuity of mass

(46) M(T∞) ≤ lim inf
j→∞

M(T j).

Wenger proved the following compactness theorem (stated in the language of
integral current spaces here):

Theorem 2.10 (Wenger [Wen11]). Let V0, A0,D > 0 and let M j = (X j, d j,T j) be
a sequence of integral current spaces of the same dimension such that

(47) M(T j) ≤ V0 and M(∂T j) ≤ A0

and

(48) diam(X j) ≤ D.

Then there exists a subsequence of M j (still denoted M j) and an integral current
space, M∞, of the same dimension (possibly the 0 space) such that

(49) lim
j→∞

dF
(
M j,M∞

)
= 0.

Additional key definitions and theorems needed in this paper were introduced
by the third named author in [Sor14].

Definition 2.11 ([Sor14]). Using the notation of Theorem 2.9, we say that p j ∈ X j
converges to p ∈ X∞ if

(50) lim
j→∞

ϕ j(p j) = ϕ∞(p) ∈ Z,

and we say p j disappears if

(51) lim
j→∞

ϕ j(p j) = z ∈ Z

but z < ϕ∞(X∞). In this definition we have already chosen a sequence of embed-
dings as in Theorem 2.9.
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Remark 2.12. Note that if a sequence (X j, d j,T j)
F
−→ (X∞, d∞,T∞) and (X j, d j)

GH
−→

(X∞, d∞) then by the Gromov Embedding Theorem we can choose the same se-
quence of embeddings and same target space Z for both notions of convergence.
By the Gromov-Hausdorff Bolzano-Weierstrass Theorem, no points disappear. The
possibility of disappearance occurs when the intrinsic flat limit is smaller than
the Gromov-Hausdorff limit due to either the cancellation or collapse of certain
regions in the sequence. This occurs for example in sequences of rotationally sym-
metric manifolds with increasingly thin gravity wells studied in work of the second
and third authors [LS14a] where the Gromov-Hausdorff limit of the sequence is Eu-
clidean space with a line segment attached and the intrinsic flat limit is Euclidean
space. The points in the thin wells disappeared under intrinsic flat convergence
but have limits lying on the line segment in the Gromov-Hausdorff limit. It is also
possible that a sequence has no Gromov-Hausdorff limit at all as in the Ilmanen
Example (cf. [SW11]) in which case many points disappear in the limit.

Lemma 2.13 ([Sor14, Lemma 4.1]). Suppose Mi = (Xi, di,Ti) are integral current
spaces which converge in the intrinsic flat sense to a nonzero integral current space
M∞ = (X∞, d∞,T∞). If p j → p∞ ∈ X∞, then there exists a subsequence such that
for almost every r > 0,

(52) S (p j, r)
F
−→ S (p∞, r)

where S (pi, ρ) := (B(pi, ρ), di,Ti B(pi, ρ)).

Due to the possibility of disappearing points under intrinsic flat convergence,
one does not have such strong Bolzano-Weierstrass and Arzela-Ascoli Theorems
as for Gromov-Hausdorff convergence. There are a few proven by the third named
author in [Sor14]. The following theorem is particularly useful for this paper.

Theorem 2.14 ([Sor14, Theorem 6.1]). Fix K > 0. Suppose that Mi = (Xi, di,Ti)

is a sequence of integral current spaces with Mi
F
−→ M∞ and that Ψi : Xi → W

are Lipschitz maps into a compact metric space W with

(53) Lip(Ψi) ≤ K.

Then a subsequence of Ψi (still denoted Ψi) converges to a Lipschitz map Ψ∞ :
X∞ → W with

(54) Lip(Ψ∞) ≤ K.

More specifically, there exist metric isometric embeddings of the subsequence, ϕi :
Xi → Z, such that dZ

F(ϕi#Ti, ϕ∞#T∞)→ 0 and for any sequence pi ∈ Xi converging
to p ∈ X∞, one has converging images,

(55) lim
i→∞

Ψi(pi) = Ψ∞(p).
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2.6. Graphical Hypersurfaces of Euclidean Space. We first recall that the spa-
tial n-dimensional Schwarzschild manifold (with boundary) of mass m > 0 can be
isometrically embedded into En+1 as the graph of the function S m(|x|) where

(56) S m(r) =


√

8m(r − 2m) for n = 3
√

2m log
(

r√
2m

+

√
r2

2m − 1
)

for n = 4

S∞ + O(r2− n
2 ) for n ≥ 5,

for some constant S∞ depending on n and m. The function S m arises from solving
the ODE for a rotationally symmetric graph with zero scalar curvature.

For asymptotically flat graphs, one can define the ADM mass as follows.

Definition 2.15 ([Lam11]). Let f be a C2 function defined on an exterior region of
En. The ADM mass of the graph of f is defined by

m =
1

2(n − 1)ωn−1
lim
r→∞

∫
|x|=r

1
1 + |D f |2

n∑
i, j=1

( fii f j − fi j fi)
x j

|x|
dHn−1,(57)

where ωn−1 is the volume of the unit (n − 1)-sphere and D f is the gradient of f as
a function on En.

The above definition coincides with the usual definition of the ADM mass under
additional assumptions on the fall-off rates of |D f | and |D2 f |, see [Lam11, HW13].

Theorem 2.16 ([Rei73]). Let f be a C2 function defined on an open subset of En.
Then the scalar curvature of the graph of f is

R =

n∑
j=1

∂

∂x j

 n∑
i=1

(
fii f j − fi j fi
1 + |D f |2

) .
The above formula of scalar curvature is closely related to the definition of

the ADM mass (57). In fact, let Ωh be a bounded subset of En such that ∂Ωh =

f −1(h) := Σh. Combining this theorem with the divergence theorem, and using the
definition of ADM mass above, Lam [Lam11] obtained that for any regular value
h of f ,

2(n − 1)ωn−1m =

∫
Rn\Ωh

R dx +

∫
Σh

|D f |2

1 + |D f |2
HΣhdHn−1,(58)

where HΣh is the mean curvature of Σh in the hyperplane
{
xn+1 = h

}
(with respect

to inward pointing normal). For an entire graph, by setting Ωh = ∅, it immediately
implies that the ADM mass is nonnegative [Lam11]. We also note that under the
nonnegative scalar curvature assumption, the ADM mass always exists, though it
may be infinite.

The first named author and Wu [HW13, HW15] proved that under the nonneg-
ative scalar curvature assumption, the mean curvature of an asymptotically flat
hypersurface in En+1 (complete or with a minimal boundary) has a sign and that
HΣh is nonnegative for almost every regular value h. They further concluded that if
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the ADM mass is zero, then there is no regular value h and thus the hypersurface
must be a hyperplane.

Based on previous work, the first two named authors studied the weighted mean
curvature integral appearing in (58), which may be regarded as a quasi-local mass
for level sets. Together with the Minkowski inequality, they were able to prove
a differential inequality for the volume functions of the level sets, as long as the
volume function is greater than ωn−1(2m)

n−1
n−2 . The differential inequality guarantees

that the volumes of the level sets grow as fast as they do for Schwarzschild spaces
of comparable mass. It is natural to define the height of the level set whose volume
realizes this volume, but technically there might be no level set with this volume
and the differential inequality may not be differentiable at this volume, so we define
the height h0 as follows.

Definition 2.17 ([HL15, Definition 3.7]). Let n ≥ 3, r0, γ,D > 0, α < 0, and
r ≥ r0. Let M ∈ Gn(r0, γ,D, α) have ADM mass m > 0. We may choose Ψ and f so
that the graph has upward pointing mean curvature ([HW13, HW15]). We define
the height

h0 = sup
{
h : Hn−1

(
f −1(h)

)
≤ 2ωn−1(2m)

n−1
n−2 for regular value h

}
.

The set of h with the desired property in Definition 2.17 is non-empty (by the
Penrose inequality [Lam11] in the case of minimal boundary). Note h0 always
exists and is finite because the level sets f −1(h) move outward as h increases and
the volume function is monotone nondecreasing in h [HL15, Proof of Lemma 3.3].

Theorem 2.18 ([HL15]). Let n ≥ 3, r0, γ,D > 0, α < 0, and r ≥ r0. We normalize
Ψ(M) and f so that the graph has upward pointing mean curvature and that h0 = 0.
For any ε > 0, there exists a δ = δ(ε, n, γ, α, r) > 0 such that if M ∈ Gn(r0, γ,D, α)
has ADM mass less than δ, then

(59) f (x) < ε for all |x| < r,

or in other words, Ψ(Ω(r)) = Ψ(M) ∩ (B(r) × R) lies below the plane En × {ε}.

Although this statement does not appear in [HL15], it is a direct consequence of
Theorems 3.10 and 4.5 from [HL15]. These two theorems were the main ingredi-
ents in the proof of following stability theorem with respect to the flat distance.

Theorem 2.19 ([HL15, Theorems 5.2 and 5.3]). Let n ≥ 3, r0, γ,D > 0, α <
0, and r ≥ r0. We vertically normalize Ψ(M) such that h0 = 0 for all M in
Gn(r0, γ,D, α). For any ε > 0, there exists a δ = δ(ε, n, γ,D, α, r) > 0 such that if
M ∈ Gn(r0, γ,D, α) has ADM mass less than δ, then

(60) dFB(r)( Ψ(M) , En × {0} ) < ε,

where B(r) is the Euclidean ball of radius r centered at the origin in En+1.

The above two theorems do not actually require all of the hypotheses used to
define Gn(r0, γ,D, α), but we state the theorem this way for simplicity and for ease
of comparison with Theorem 1.3.
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Remark 2.20. Note that the normalization hypothesis h0 = 0 is not needed in The-
orem 1.3 and Theorem 1.4 because the statements in both theorems are invariant
under vertical translations of f .

3. E   L

We now begin our proof of Theorem 1.3. We fix n ≥ 3, r0, γ,D > 0, α < 0, and
r ≥ r0 once and for all. Given M ∈ Gn(r0, γ,D, α), we define

(61) Ω(r) = Ψ−1(B(r) × R)

as in the statement of Theorem 1.3. We also define

(62) Σ(r) = ∂Ω(r) r ∂M = Ψ−1(∂B(r) × R).

All these spaces are endowed with the restricted metric from M.
Our first task is to extract a limit. That is, we prove Theorem 3.1 that the family

of Ω(r) coming from Gn(r0, γ,D, α) is precompact in the intrinsic flat topology.

Theorem 3.1. Let r be fixed. Given a sequence M j ∈ Gn(r0, γ,D, α) there is a
subsequence (still denoted M j) and an integral current space

(63) Ω∞(r) = (X∞, d∞,T∞)

such that

(64) lim
j→∞

dF
(
Ω j(r),Ω∞(r)

)
= 0.

There also exists a 1-Lipschitz map

(65) Ψ∞ : Ω∞(r) −→ B(r) × R ⊂ En+1

which is a limit of Ψ j as in Theorem 2.14.

Remark 3.2. Note that this lemma does not require ADM mass to converge to 0.

Remark 3.3. A stronger compactness result was proven in the rotationally symmet-
ric case by the third named author with LeFloch [LS14b] for Ω j(r0) of uniformly
bounded depth, Depth(Ω j(r),Σ j(r0)) ≤ D0, and Hawking mass, mH(Σ j(r0)) ≤ m0,
that lie within symmetric manifolds, M j, with nonnegative scalar curvature that
have no closed interior minimal surfaces. Specifically they prove there is a subse-
quence

(66) Ω j(r0)
F
−→ Ω∞(r0)

where Ω∞(r0) is a rotationally symmetric integral current space which has weakly
nonnegative scalar curvature and mH(Σ(r0)) ≤ m0. In addition the Hawking
masses converge to the generalized Hawking mass of the limit space and the limit
space has generalized nonnegative scalar curvature. One key step in that theorem
is the proof that the limit space is not the 0 space. In Theorem 3.1 we do not yet
elliminate the possibility that Ω∞(r) = 0 nor do we prove Ω∞(r) has curvature and
Hawking mass bounds. This would be an interesting question.
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Proof. We first check the hypotheses of Wenger’s Compactness Theorem (cf. The-
orem 2.10). Because of the gradient bound |D f j| ≤ γ for |x| ≥ r0, it follows that

(67) Vol(∂Ω j(r)) ≤ ωn−1rn−1
√

1 + γ2.

The gradient bound also means that the distance between any two points in Ω j(r)r
Ω j(r0) is bounded by πr

√
1 + γ2.

Since Depth(Ω j(r0),Σ j(r0)) ≤ D by Definition 1.2, it follows that

(68) diam(Ω j(r)) ≤ 2D + πr
√

1 + γ2.

For the volume bound, we use the coarea formula to estimate

Vol(Ω j(r)) =

∫
B(r)rU j

√
1 + |D f j|

2 dLn(69)

≤

∫
B(r)rU j

(1 + |D f j|) dLn(70)

≤ Vol(B(r)) +

∫ ∞

−∞

Hn−1( f −1
j (h) ∩ B(r)) dh.(71)

B(r)

S ′

S

E

F 2. S = ∂∗(E) and S ′ = ∂∗(E ∪ B(r))

In order to estimate the volumes of the level sets, we claim that if S ⊂ En is
an outward-minimizing hypersurface, then Hn−1(S ∩ B(r)) ≤ Hn−1(∂B(r)). To
see this, we set S = ∂∗E, where ∂∗ denotes the reduced boundary. Let S ′ =

∂∗(E ∪ B(r)). Then Hn−1(S ) ≤ Hn−1(S ′) by the outward-minimizing property
of S . By removing the intersection,Hn−1(S rS ′) ≤ Hn−1(S ′ rS ). The claim then
follows because S r S ′ = S ∩ B(r) and S ′ r S ⊂ ∂B(r). See Figure 2.

Since almost every level set of f is outward-minimizing, the claim shows that
Hn−1( f −1

j (h) ∩ B(r)) ≤ Hn−1(∂B(r)) for almost every h. Moreover, f −1
j (h) ∩ B(r)

must actually be empty away from an interval of length equal to diam Ω j(r). Thus

(72) Vol(Ω j(r)) ≤ Vol(B(r)) + diam Ω j(r) Vol(∂B(r))

and we already bounded diam Ω j(r). Hence we can apply Wenger’s Compactness
Theorem (cf. Theorem 2.10) to extract a subsequence of Ω j(r) converging in the
intrinsic flat sense. As in his compactness theorem, this limit space may be 0.
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The last conclusion involving Ψ∞ then follows immediately from Theorem 2.14,
since each Ψ j is clearly a distance non-increasing map into compact space B(r) ×
[−D,D]. �

4. G E

We have shown in Theorem 3.1 that

(73) Ω j(r)
F
−→ Ω∞(r) = (X∞, d∞,T∞).

Then immediately

(74) ∂Ω j(r)
F
−→ ∂Ω∞(r) = (set(∂T∞), d∞, ∂T∞).

In this section we use the fact that the manifolds are graphs and have ADM mass
converging to 0 and apply prior work of the first two named authors [HL15] and
Lam [Lam11] to provide key geometric estimates. In Lemma 4.1, we prove that
the inner boundaries disappear and the outer boundaries converge:

(75) Σ j(r)
F
−→ Σ∞(r) = ∂Ω∞(r).

In Lemmas 4.2 and 4.3 we bound the volumes of Ω j(r) from above and below:
showing Vol(Ω j(r)) → Vol(B(r)). In Lemma 4.5 we prove that Ψ∞(Ω∞) lies in a
Euclidean disk.

4.1. Inner boundaries disappear.

Lemma 4.1. Given the setup of Theorem 3.1, if we further assume that the ADM
mass of M j converges to zero, then

(76) Σ j(r)
F
−→ Σ∞(r) := ∂Ω∞(r) = (set(∂T∞), d∞, ∂T∞).

Proof. Viewed as integral currents:

(77) [∂Ω j(r)] − [Σ j(r)] = [∂M j].

By Lam’s Penrose inequality [Lam11], we know that Vol(∂M j) ≤ ωn−1(2m j)
n−1
n−2 ,

where m j is the ADM mass of M j. Thus

(78) lim
j→∞

M[∂M j] = 0.

By the definition of the intrinsic flat distance and the fact that Σ j and ∂Ω j are
endowed with the restricted metric from M j, we have

dF
(
Σ j, ∂Ω j

)
≤ dM j

F ([Σ j(r)], [∂Ω j(r))])(79)

≤ M[∂M j] → 0.(80)

Since ∂Ω j
F
−→ ∂Ω∞, we have Σ j

F
−→ ∂Ω∞. �
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4.2. Volume Bounds. In order to apply Theorem 2.18, throughout this section we
adopt the convention that Ψ and f are chosen so that the graph has upward pointing
mean curvature and that Ψ(M) is vertically normalized such that h0 = 0, where h0
is defined by Definition 2.17. (See Section 2.6.)

By definition of h0, for any regular value h < h0 = 0,

(81) Hn−1( f −1(h)) = Vol(Ψ(M) ∩ (En × {h})) < 2ωn−1(2m)
n−1
n−2 ,

which immediately implies that for any ε > 0, there exists δ = δ(ε, n) such that if
the ADM mass of M ∈ Gn(r0, γ,D, α) is less then δ, then

(82) Hn−1( f −1(h)) < ε.

Using this we can show that the part of Ψ(M) lying under the plane En × {0} must
have small volume.

Lemma 4.2. For any ε > 0, there exists δ = δ(ε, n, γ,D, r) > 0 such that if M ∈
Gn(r0, γ,D, α) has mass less than δ, then

(83) Vol(Ω−(r)) < ε

where Ω−(r) := Ψ−1(B(r) × (−∞, 0)).

Proof. We choose δ small enough so that (82) holds. Arguing as in the proof of
Theorem 3.1, we have

Vol(Ω−(r)) =

∫
f (x)<0

√
1 + |D f |2 dLn(84)

≤ Hn( f −1(−∞, 0)) +

∫ 0

−∞

Hn−1( f −1(h) ∩ B(r)) dh.(85)

By the isoperimetric inequality and (82), the first term is bounded by a constant
times ε

n
n−1 .

To estimate the second term, by (82), for almost every negative h,

(86) Hn−1( f −1(h) ∩ B(r)) ≤ Hn−1( f −1(h)) < ε.

As in the proof of Theorem 3.1, it follows that

(87)
∫ 0

−∞

Hn−1( f −1(h) ∩ B(r)) dh < ε diam(Ω(r)),

and we know diam(Ω(r)) is bounded in term of γ, D, and r. �

Theorem 2.18 allows us to estimate the rest of the volume of Ω(r).

Lemma 4.3. For any ε > 0, there exists δ = δ(ε, n, r, γ, α) > 0 such that if M ∈
Gn(r0, γ,D, α) has ADM mass less than δ, then

(88) Vol(Ω+(r)) ≤ Vol(B(r)) + ε

where Ω+(r) := Ψ−1(B(r) × [0,∞)).



20 HUANG, LEE, AND SORMANI

Proof. We choose δ small enough so that Theorem 2.18 holds. As in the proof of
Theorem 3.1 we have

(89) Vol(Ω+(r)) ≤ Vol(B(r)) +

∫ ε

0
Hn−1( f −1(h) ∩ B(r)) dh,

where the upper limit ε follows from Theorem 2.18. As in the proof of Theorem
3.1, for almost every h we haveHn−1( f −1(h) ∩ B(r)) ≤ Vol(∂B(r)). Thus

(90) Vol(Ω+(r)) ≤ Vol(B(r)) + ε Vol(∂B(r)).

�

Corollary 4.4. If M j ∈ Gn(r0, γ,D, α) is a sequence with masses approaching zero,
then lim sup j→∞Vol(Ω j(r)) ≤ Vol(B(r)).

4.3. The Image of Ψ∞ Lies in a Disk. Our goal is to show that Ψ∞ is an isometry
from Ω∞(r) to B(r)× {0}. The next lemma shows that the image falls in the correct
place. However, technically we will only use the fact that boundary falls in the
right place.

Lemma 4.5. Let M j be as in the statement of Theorem 3.1, and assume that the
ADM mass of M j converges to zero. The 1-Lipschitz map

(91) Ψ∞ : Ω∞(r) −→ B(r) × R ⊂ En+1

constructed in Theorem 3.1 has image lying in the disk B(r) × {0}. In particular,
the induced map on the boundary Σ∞(r) := ∂Ω∞(r) has image lying in ∂B(r) × {0}.

Proof. Recall that for any p ∈ Ω∞(r), Ψ∞(p) is the limit of Ψ j(p j) for some se-
quence p j ∈ Ω j(r) converging to p. By Theorem 2.18, we know that for ε > 0, the
point Ψ j(p j) ∈ Ψ j(Ω j(r)) lies below the height ε for large j. Thus Ψ∞(p) lies in
B(r) × (−∞, 0]. Now suppose Ψ∞(p) lies strictly below the height 0. Then for any
ρ > 0 sufficiently small, the intrinsic ball B(p j, ρ) ⊂ M j lies entirely inside Ω−j (r).
By Lemma 4.2, we must have lim j→∞Vol(B(p j, ρ)) = 0. But this contradicts the
fact that p j → p ∈ Ω∞(r), by Lemma 2.13, for example.

For the second part of the lemma, consider p ∈ ∂Ω∞(r). By Lemma 4.1, Ψ∞(p)
is the limit of Ψ j(p j) for some sequence p j ∈ Σ j(r) converging to p. Since each
Ψ j(p j) lies in ∂B(r)×R, the result now follows from the first part of the lemma. �

5. B-LM  Σ(r)  ∂B(r)

In this section we prove that the outer boundaries Σ j(r) behave far better than
Ω j(r). We already know

(92) Ω j(r)
F
−→ Ω∞(r) = (X∞, d∞,T∞)

and by Lemma 4.1 we know

(93) Σ j(r)
F
−→ Σ∞(r) := ∂Ω∞(r) = (set(∂T∞), d∞, ∂T∞).

Now we prove far more:
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Lemma 5.1. Assume the hypotheses of Lemma 4.5. Then we have Gromov-Hausdorff
convergence to the limit

(94) (Σ j(r), d j)
GH
−→ (Σ∞(r), d∞)

and the map

(95) Ψ∞ : Σ∞(r) −→ ∂B(r) × {0}

described in Lemma 4.5 is a bi-Lipschitz map. In particular, it follows that

(96) Ψ∞#(∂T∞) = [∂B(r) × {0}],

where [∂B(r) × {0}] denotes the integral (n − 1)-current in En+1 corresponding to
the (n − 1) dimensional submanifold ∂B(r) × {0}.

Remark 5.2. By the Gromov-Hausdorff convergence we know that for any se-
quence p j ∈ Σ j(r), there is a subsequence which converges to p∞ ∈ Σ∞(r). In
other words, there are no disappearing sequences on the boundary. There can be
disappearing sequences inside Ω j(r). This can be seen in rotationally symmetric
examples by choosing points in increasingly thin wells of uniform depth as in the
work of the last two named authors [LS14a].

Remark 5.3. This lemma strongly uses (7) in the hypotheses on Ω(r). Without this
condition it is possible for there to be sequences of p j ∈ Σ j(r) which disappear
in the limit. One may center the rotational symmetry of the previously mentioned
example about a point in ∂B(r) if we do not require (7).

Proof. Let π be the obvious projection map from En+1 to En × {0}, and define the
map

(97) Φ j : ∂B(r) × {0} −→ Σ j(r)

to be the inverse of the bijective map

(98) π ◦ Ψ j : Σ j(r) −→ ∂B(r) × {0} .

We claim that the Φ j have a uniformly bounded Lipschitz constant Γ. For any
x1, x2 ∈ ∂B(r)×{0}with Euclidean distance |x1− x2| ≤

√
2r, we can “lift” the chord

joining x1 to x2 to a curve c : [0, 1] −→ Ω j(r) joining Φ j(x1) to Φ j(x2) such that
π(Ψ j(c(t))) = x1(1 − t) + x2t. Note that this is possible because the chord joining
x1 to x2 stays outside B(r0/2) × {0} and U ⊂ B(r0/2) by Definition 1.2.

For the same reason we can apply the gradient bound in Definition 1.2 to con-
clude that

(99) |c′(t)| ≤ |x1 − x2|

√
1 + γ2,

and consequently,

(100) d j(Φ j(x1),Φ j(x2)) ≤ |x1 − x2|

√
1 + γ2.

Now consider any pair x1, x2 ∈ ∂B(r) × {0}. There is a midpoint x3 ∈ ∂B(r) such
that

(101) |x1 − x3| = |x3 − x2| ≤
√

2r.
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Then
d j(Φ j(x1),Φ j(x2))

|x1 − x2|
≤

d j(Φ j(x1),Φ j(x3)) + d j(Φ j(x3),Φ j(x2))
|x1 − x3|

(102)

≤
(|x1 − x3| + |x3 − x2|)

√
1 + γ2

|x1 − x3|
= 2

√
1 + γ2.(103)

Thus we have proven our claim:

(104) Lip(Φ j) ≤ Γ,

where Γ = 2
√

1 + γ2.
Next we will apply this uniform Lipschitz bound to prove Gromov-Hausdorff

convergence by applying Theorem 8.1 from the appendix. To apply this theorem
we need to view all our spaces as lying on a single domain.

We consider the pullback metric d′j = Φ∗jd j on ∂B(r)×{0}, where d j is the metric
on Ω j(r). So we have

(105) (∂Ω j(r), d j, [∂Ω j(r)]) � (∂B(r) × {0} , d′j, [∂B(r) × {0}])

via Φ j as a current preserving isometry because we are simply pulling back the
metric.

We can now apply Theorem 8.1 in the Appendix because (104) implies that

(106) 1 ≤
d′j(x, y)

dEn+1(x, y)
≤ Γ

for all x, y ∈ ∂B(r) × {0}. Thus there is a subsequence which we also denote d′j and
there exists a metric d′∞ = lim j→∞ d′j on ∂B(r) × {0}, with the property that

(107) 1 ≤
d′∞(x, y)

dEn+1(x, y)
≤ Γ,

and such that our integral current spaces in (105) converge (subsequentially) in
both the intrinsic flat and Gromov-Hausdorff sense to

(108) (∂B(r) × {0} , d′∞, [∂B(r) × {0}]).

However we know Σ j(r)
F
−→ Σ∞(r). Thus there is a current preserving isometry so

that

(109) (Σ∞(r), d∞, ∂T∞) � (∂B(r) × {0} , d′∞, [∂B(r) × {0}]).

So we have Σ j(r)
GH
−→ Σ∞(r) for the subsequence.

Next we prove Ψ∞ is bi-Lipschitz. Since it is defined to be the limit of Lipschitz
1 maps, we already know Lip(Ψ∞) ≤ 1. We must construct the inverse map and
prove it is Lipschitz.

Since Φ j : ∂B(r) × {0} −→ Σ j(r) satisfy (104), we can apply the Gromov-
Hausdorff Arzela-Ascoli Theorem of Grove-Petersen [GP91] to see that a further
subsequence converges to

(110) Φ∞ : ∂B(r) × {0} −→ Σ∞(r)

which also satisfies (104). We need only show Φ∞ is the inverse of Ψ∞.
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Since

(111) Φ j ◦ π ◦ Ψ j = id : Σ j(r)→ Σ j(r)

and

(112) π ◦ Ψ j ◦ Φ j = id : ∂B(r) × {0} → ∂B(r) × {0}

we have

(113) Φ∞ ◦ π ◦ Ψ∞ = id : Σ∞(r)→ Σ∞(r)

and

(114) π ◦ Ψ∞ ◦ Φ∞ = id : ∂B(r) × {0} → ∂B(r) × {0} .

Thus

(115) π ◦ Ψ∞ : Σ∞(r)→ ∂B(r) × {0}

is the inverse of Φ∞. By Lemma 4.5, π ◦ Ψ∞ = Ψ∞. �

6. P  T 1.3

We now complete the proof of Theorem 1.3:

Proof. By Lemma 5.1, we know that

(116) ∂[B(r) × {0}] = Ψ∞#(∂T∞) = ∂(Ψ∞#T∞)

as an equality between (n − 1) currents in En+1.
In the following computation, we use the minimizing property of the disk (among

integral currents with the same boundary) in the first step, the fact that Lip(Ψ∞) ≤ 1
in the second step, lower semicontinuity of mass (cf. Theorem 2.9) in the third step,
and Corollary 4.4 in the final step.

Vol(B(r)) ≤M(Ψ∞#T∞)(117)
≤M(T∞)(118)
≤ lim inf

j→∞
M(T j)(119)

= lim inf
j→∞

Vol(Ω j(r))(120)

= Vol(B(r)).(121)

Equality in the first step implies that Ψ∞#T∞ = [B(r) × {0}], and then equality in
the second inequality (118) for a Lipschitz 1 function implies that Ψ∞ : Ω∞(r) −→
B(r) × {0} must be an isometry. In summary, we have shown that any sequence
in Gn(r0, γ,D, α) with the ADM mass converging to zero has a subsequence that
converges to B(r) × {0} in the intrinsic flat distance. The volume convergence
follows from Corollary 4.4.

To obtain the epsilon-delta formulation of Theorem 1.3 from this is standard. �
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7. P  P C

We now turn to the proof of Theorem 1.4. Note that it is important that the points
p j are not chosen arbitrarily. It is easy to see that if p j is a sequence of disappearing
points, the result will not hold, as can be seen in the example described in Remark
2.12.

Proof of Theorem 1.4. Assume the hypotheses of Theorem 1.4. Fix any R′ > 0. It
suffices to prove that for almost every R ∈ (0,R′) we have (14).

We claim that if r = R′ + r0 then Bp j(R) ⊂ Ω j(r) ⊂ M j. To see this, for each
q ∈ Bp j(R), we have

(122) dEn(π(Ψ j(q)), ∂B(r0)) ≤ dM j(q,Σ j(r0)) < R < R′.

Thus π(Ψ j(q)) ⊂ B(r0 + R′) r U and so q ∈ Ω(r0 + R′) ⊂ M j.
By Theorem 1.3 we know that

(123) lim
j→∞

dF
(
Ω j(r) ⊂ M j, B(r) ⊂ En

)
= 0

and by Lemma 5.1 we know that

(124) lim
j→∞

dGH
(
Σ j(r0) ⊂ M j, ∂B(r0) ⊂ En

)
= 0.

So for any sequence of points p j ∈ Σ j(r0) there is a subsequence

(125) p ji → p∞ ∈ ∂B(r0) ⊂ B(r).

by the Gromov-Hausdorff Bolzano-Weierstrass Theorem (cf. Theorem 2.5). Then

by the intrinsic flat ball convergence lemma (cf. Lemma 2.13), Bp ji
(R)

F
−→ Bp∞(R).

Since Bp∞(R) is isometric to a Euclidean ball of radius R regardless of the value of
p∞, we have (14) and we are done with the proof of pointed intrinsic flat conver-
gence.

The volume convergence follows from the volume convergence in Theorem 1.3
and semicontinuity of volume as follows:

lim inf
j→∞

Vol(Bp j(R)) = lim inf
j→∞

M([Bp j(R)])

≥ M([Bp∞(R)])
≥ Vol(B(R))

lim sup
j→∞

Vol(Bp j(R)) = lim sup
j→∞

M([Bp j(R)])

≤ lim sup
j→∞

M([Ω j(r)]) − lim inf
j→∞

M([Ω j(r) \ Bp j(R)])

= lim sup
j→∞

Vol([Ω j(r)]) − lim inf
j→∞

M([Ω j(r) \ Bp j(R)])

≤ Vol(B(r)) −M([B(r) \ Bp∞(R)])
= Vol(B(r)) − Vol(B(r)) + Vol(B(R))
= Vol(B(R)).

�
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8. A

The following theorem concerning intrinsic flat limits of integral current spaces
with varying metrics may be applicable in other settings as well. The Gromov-
Hausdorff part of this theorem was already proven by Gromov in [Gro81b] but with
a completely different proof in which the common metric space Z is the disjoint
union. The fact that one also obtains an intrinsic flat limit which agrees with the
Gromov-Hausdorff limit is new.

Theorem 8.1. Fix a precompact n-dimensional integral current space (X, d0,T )
without boundary (e.g. ∂T = 0) and fix λ > 0. Suppose that d j are metrics on X
such that

(126) λ ≥
d j(p, q)
d0(p, q)

≥
1
λ
.

Then there exists a subsequence, also denoted d j, and a length metric d∞ satisfying
(126) such that d j converges uniformly to d∞

(127) ε j = sup
{
|d j(p, q) − d∞(p, q)| : p, q ∈ X

}
→ 0.

Furthermore

(128) lim
j→∞

dGH
(
(X, d j), (X, d∞)

)
= 0

and

(129) lim
j→∞

dF
(
(X, d j,T ), (X, d∞,T )

)
= 0.

In particular, (X, d∞,T ) is an integral current space and set(T ) = X so there are
no disappearing sequences of points x j ∈ (X, d j).

In fact we have

(130) dGH
(
(X, d j), (X, d∞)

)
≤ 2ε j

and

(131) dF
(
(X, d j,T ), (X, d∞,T )

)
≤ 2(n+1)/2λn+12ε jM(X,d0)(T ).

To prove this theorem we need a series of lemmas:

Lemma 8.2. Under the hypothesis of Theorem 8.1, there exists a subsequence,
also denoted d j, and a length metric d∞ satisfying (126) such that d j converges
uniformly to d∞:

(132) lim
j→∞

sup
{
|d j(p, q) − d∞(p, q)| : p, q ∈ X

}
→ 0

and (X, d∞,T ) is an integral current space.

Proof. Observe that the functions d j may be extended to the metric completion:

(133) d j : X × X → [0, diamd j(X)] ⊂ [0, λ diamd0(X)].
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By (126) they are equicontinuous and so by the Arzela-Ascoli Theorem they have
a subsequence converging uniformly to a function

(134) d∞ : X × X → [0, λ diamd0(X)].

Taking the limit of 126 we see that d∞ satisfies (126) as well. In particular d∞ is a
metric on X.

Furthermore the Ambrosio-Kirchheim mass measure defined using d0 and de-
fined using d j may be related as follows:

(135) λn||T ||0 ≥ ||T || j ≥ ||T ||0λ−n.

Recall that X = set0(T ) ⊂ X̄ because (X, d0,T ) is an integral current space (by
the definition of integral current space). In general the set of positive density also
depends upon the metric just as the mass measure done. Here we have

X = set0(T ) =

{
p ∈ X̄ : lim inf

r→0

||T ||0(Bp(r))
rn > 0

}
(136)

=

{
p ∈ X̄ : lim inf

r→0

||T || j(Bp(r))
rn > 0

}
(137)

= set j(T )(138)

and so (X, d j,T ) is also an integral current space. This is true for all j = 1, 2, ...,∞.
�

Lemma 8.3. Given two metric spaces (X, d j) and (X, d∞) there exists a common
metric space

(139) Z j = [−ε j, ε j] × X.

where

(140) ε j = sup
{
|d j(p, q) − d∞(p, q)| : p, q ∈ X

}
with a metric d′j on Z j such that

(141) d′j((−ε j, p), (−ε j, q)) = d j(p, q)

(142) d′j((ε j, p), (ε j, q)) = d∞(p, q).

Thus we have metric isometric embeddings ϕ j : (X, d j) → (Z j, d′j) and ϕ′j :
(X, d∞)→ (Z j, d′j) such that

(143) ϕ j(p) = (−ε j, p) and ϕ′j(p) = (ε j, p).

In addition, if d0, d j satisfy (126), then

(144) d′j(z1, z2) ≤ d′0((t1, p1), (t2, p2)) := |t1 − t2| + λd0(p1, p2).
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More precisely, we define d′j by

d′j(z1, z2) := min {d, d−, d+, d−+, d+−} where(145)

d = d(z1, z2) = |t1 − t2| + max
{
d j(p1, p2), d∞(p1, p2)

}
(146)

d− = d−(z1, z2) = |t1 + ε j| + |t2 + ε j| + d j(p1, p2)(147)
d+ = d+(z1, z2) = |t1 − ε j| + |t2 − ε j| + d∞(p1, p2)(148)

d−+ = d−+(z1, z2) = inf
{
d−(z1, z) + d+(z, z2) : z ∈ Z j

}
(149)

d+− = d+−(z1, z2) = inf
{
d+(z1, z) + d−(z, z2) : z ∈ Z j

}
.(150)

Note that Z j need not be a complete metric space, even if X is complete with
respect to both metrics. See Example 8.4. However we may always take the metric
completion of Z j if we need a complete metric space.

Before proving this lemma we apply it to prove Theorem 8.1:

Proof. First apply Lemmas 8.2 and 8.3 and take the metric completion of Z j if it is
not yet complete. Observe that

d′j((−ε j, p), (ε j, p)) ≤ d−((−ε j, p), (ε j, p))(151)

= 0 + 2ε j + d j(p, p) = 2ε j.(152)

Thus

(153) dZ j
H (ϕ j(X), ϕ′j(X)) ≤ 2ε j

and we have (130) which implies (128).
To obtain (131), we take B j = Iε × T to be the product integral current on

Z j = Iε × X where Iε = [−ε j, ε j] (see [Sor13] for the precise definition of such
products of intervals with currents). When T is just integration over a smooth
manifold M, then Iε × T is just integration over Iε × M.

In [Sor13] it is proven that

(154) ∂(Iε × T ) = Iε × (∂T ) + (∂Iε) × T.

Since ∂T = 0 we have

(155) ∂B j = φ j#T − φ′j#T.

Then by the definition of the intrinsic flat distance,

dF
(
(X, d j,T ), (X, d∞,T )

)
≤ dZ j

F (φ j#T, φ′j#T )(156)

≤ M(Z j,d′j)(B) + 0.(157)

So we need only estimate the mass of B j.
In [Sor13] it is shown that

(158) M(Z j,D j)([−ε j, ε j] × T ) = 2ε j M(X,λd0)(T )

when the distance, D j is the isometric product metric on Z j defined with d0:

(159) D j((t1, p1), (t2, p2)) =

√
|t1 − t2|2 + (λd0(p1, p2))2.
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Since

d′j(z1, z2) ≤ d′0((t1, p1), (t2, p2)) := |t1 − t2| + λd0(p1, p2)(160)

≤
√

2 D j((t1, p1), (t2, p2)).(161)

We have

M(Z j,d′j)(B) ≤ M(Z j,
√

2D)(B)(162)

≤ 2(n+1)/2 M(Z j,D j)(B)(163)

≤ 2(n+1)/22ε j M(X,λd0)(T )(164)

≤ 2(n+1)/2λn+12ε j M(X,d0)(T ).(165)

Thus we have (131) which implies (129).
This completes the proof of Theorem 8.1. �

Finally we prove Lemma 8.3:

Proof. First note that

d−+ = |t1 + ε j| + |t2 − ε j| + 2ε j + inf
{
d j(p1, p) + d∞(p, p2) : p ∈ X

}
(166)

d+− = |t1 − ε j| + |t2 + ε j| + 2ε j + inf
{
d∞(p1, p) + d j(p, p2) : p ∈ X

}
.(167)

Observe that d′j is immediately symmetric and nonnegative. It is positive definite
because

min {d(z1, z2), d−(z1, z2), d+(z1, z2)} ≥ |t1 − t2| + min
{
d j(p1, p2), d∞(p1, p2)

}
and clearly d−+(z1, z2), d+−(z1, z2) > 2ε j for distinct z1, z2.

Before proving the triangle inequality, we apply (140) to prove (141):

d−((−ε j, p1), (−ε j, p2)) = d j(p1, p2)
d ((−ε j, p1), (−ε j, p2)) ≥ d j(p1, p2)
d+((−ε j, p1), (−ε j, p2)) = 4ε j + d∞(p1, p2)

≥ 4ε j + d j(p1, p2) − ε j ≥ d j(p1, p2)

d−+((−ε j, p1), (−ε j, p2)) = 0 + 2ε j + 2ε j + inf
{
d j(p1, p) + d∞(p, p2) : p ∈ X

}
≥ 4ε j + d j(p1, p2) − ε j ≥ d j(p1, p2)

d+−((−ε j, p1), (−ε j, p2)) = 2ε j + 0 + 2ε j + inf
{
d∞(p1, p) + d j(p, p2) : p ∈ X

}
≥ 4ε j + d j(p1, p2) − ε j ≥ d j(p1, p2).

Naturally (142) follows in a similar way.
It suffices now to prove the triangle inequality.
In (170)-(189) we prove the triangle inequality in the case where:

(168) d′j(z1, z2) = min {d(z1, z2), d−(z1, z2), d+(z1, z2)}

and

(169) d′j(z2, z3) = min {d(z2, z3), d−(z2, z3), d+(z2, z3)} .
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Observe that

d′j(z1, z3) ≤ d(z1, z3)(170)

= |t1 − t3| + max
{
d j(p1, p3), d∞(p1, p3)

}
(171)

≤ |t1 − t2| + |t2 − t3|(172)

+ max
{
d j(p1, p2) + d j(p2, p3), d∞(p1, p2) + d∞(p2, p3)

}
(173)

≤ |t1 − t2| + max
{
d j(p1, p2), d∞(p1, p2)

}
(174)

+|t2 − t3| + max
{
d j(p2, p3), d∞(p2, p3)

}
(175)

= d(z1, z2) + d(z2, z3)(176)
d′j(z1, z3) ≤ d−(z1, z3)(177)

= |t1 + ε j| + |t3 + ε j| + d j(p1, p3)(178)
≤ |t1 − t2| + |t2 + ε j| + |t3 + ε j|(179)

+d j(p1, p2) + d j(p2, p3)(180)

≤ |t1 − t2| + max
{
d j(p1, p2), d∞(p1, p2)

}
(181)

|t2 + ε j| + |t3 + ε j| + d j(p2, p3)(182)
≤ d(z1, z2) + d−(z2, z3)(183)

and similarly

(184) d′j(z1, z3) ≤ d(z1, z2) + d+(z2, z3).

Clearly

(185) |t1 + ε j| + |t3 + ε j| ≤ |t1 + ε j| + 2|t2 + ε j| + |t3 + ε j|

so

d′j(z1, z3) ≤ d−(z1, z2) + d−(z2, z3)(186)

d′j(z1, z3) ≤ d+(z1, z2) + d+(z2, z3).(187)

Immediately by the definition we have

d′j(z1, z3) ≤ d−+(z1, z3) ≤ d−(z1, z2) + d+(z2, z3)(188)

d′j(z1, z3) ≤ d+−(z1, z3) ≤ d+(z1, z2) + d−(z2, z3).(189)

Thus we have shown the triangle inequality holds as long as (168)-(169) hold.
We need only prove the triangle inequality for all the five cases where

(190) d′j(z1, z2) = d−+(z1, z2).

The rest of the cases will follow by symmetry in the definitions of d−+ and d+− and
in swapping of the points z1, z2 with z3, z2.
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d′j(z1, z3) ≤ d−+(z1, z3)(191)

= |t1 + ε j| + |t3 − ε j| + 2ε j + inf
{
d j(p1, p) + d∞(p, p3) : p ∈ X

}
(192)

≤ |t1 + ε j| + |t2 − ε j| + 2ε j + |t3 − t2|(193)

+ inf
{
d j(p1, p) + d∞(p, p2) + d∞(p2, p3) : p ∈ X

}
(194)

≤ d−+(z1, z2) + d(z2, z3)(195)

d′j(z1, z3) ≤ d−+(z1, z3)(196)

= inf {d−(z1, z) + d+(z, z3) : z ∈ Z}(197)

≤ inf
{
d−(z1, z) + d+(z, z2) + d+(z2, z3) : z ∈ Z j

}
(198)

= d−+(z1, z2) + d+(z2, z3)(199)

Below we will use the following inequality, which follows from (140),

d j(p1, p2) ≤ inf
{
d j(p1, p) + d∞(p, p2) : p ∈ X

}
+ ε j.(200)

So

d′j(z1, z3) ≤ d−(z1, z3)(201)

= |t1 + ε j| + |t3 + ε j| + d j(p1, p3)(202)
≤ |t1 + ε j| + |t3 + ε j| + d j(p1, p2) + d j(p2, p3)(203)
≤ |t1 + ε j| + |t3 + ε j|(204)

+ inf
{
d j(p1, p) + d∞(p, p2) : p ∈ X

}
+ ε j + d j(p2, p3)(205)

≤ d−+(z1, z2) + d−(z2, z3)(206)

and

d′j(z1, z3) ≤ d−+(z1, z3)(207)

= |t1 + ε j| + |t3 − ε j| + 2ε j + inf
{
d j(p1, p) + d∞(p, p3) : p ∈ X

}
(208)

≤ |t1 + ε j| + |t3 − ε j| + 2ε j(209)

+ inf
{
d j(p1, p′) + d j(p′, p2) : p′ ∈ X

}
(210)

+ inf
{
d j(p2, p) + d∞(p, p3) : p ∈ X

}
(211)

≤ |t1 + ε j| + |t3 − ε j| + 3ε j(212)

+ inf
{
d j(p1, p′) + d∞(p′, p2) : p′ ∈ X

}
(213)

+ inf
{
d j(p2, p) + d∞(p, p3) : p ∈ X

}
(214)

≤ d−+(z1, z2) + d−+(z2, z3)(215)
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and

d′j(z1, z3) ≤ d−(z1, z3)(216)

= |t1 + ε j| + |t3 + ε j| + d j(p1, p3)(217)
≤ |t1 + ε j| + |t3 + ε j| + d j(p1, p2) + d j(p2, p3)(218)
≤ |t1 + ε j| + |t3 + ε j| + 2ε j(219)

+ inf
{
d j(p1, p) + d∞(p, p2) : p ∈ X

}
(220)

+ inf
{
d j(p2, p) + d∞(p, p3) : p ∈ X

}
(221)

≤ d−+(z1, z2) + d+−(z2, z3).(222)

Thus d′j is a metric. �

The metric space Z j constructed in Lemma 8.3 is not necessarily complete even
if X is complete with respect to both d j and d∞:

Example 8.4. Let X = {0, 1/2, 1/4, ...} ∪ {1}. Let d j(p1, p2) = |p1 − p2|. Let
F : X → X be the identity map on X \ {0, 1} and F(0) = 1 and F(1) = 0. Let
d∞(p1, p2) = |F(p1) − F(p2)|. Both (X, d j) and (X, d∞) are complete but with
different limits for the sequence {1/2, 1/4, ...}:

d j(1/i, 0)→ 0 and d∞(1/i, 1)→ 0 as i→ ∞.

Observe that ε j = 1 because

(223) 1 ≥ ε j ≥ lim
i→∞
|d j(1/i, 1) − d∞(1/i, 1)| = 1.

So

(224) Z j = [−1, 1] × X.

Take the sequence of points zi = (0, 1/i). This sequence is Cauchy in Z j because

(225) d′j(zi, zk) ≤ d(zi, zk) = 0 + |1/i − 1/k| ∀i, k > 1.

Assume on the contrary that this sequence of points converges to a point z∞ =

(t∞, p∞) ∈ Z j. Observe that for any z ∈ Z j,

d+(zi, z) ≥ |0 − 1| + |t − 1| ≥ 1(226)
d−(zi, z) ≥ |0 + 1| + |t + 1| ≥ 1(227)

d−+(zi, z∞) = inf
{
d−(zi, z) + d+(z, z∞) : z ∈ Z j

}
≥ 1(228)

d+−(zi, z∞) = inf
{
d+(zi, z) + d−(z, z∞) : z ∈ Z j

}
≥ 1.(229)

Therefore, for i sufficiently large,

(230) d′j(zi, z∞) = d(zi, z∞) = |0 − t∞| + max
{
d j(1/i, p∞), d∞(1/i, p∞)

}
→ 0.

Thus p∞ is the limit of the sequence {1/i} with respect to both metrics d j, d∞, which
is a contradiction. Thus Z j is not complete.

The metric completion of Z j is

(231) Z̄ j = [−1, 1] × (X ∪ {p∞}) |∼
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where (−1, p∞) ∼ (−1, 0) and (1, p∞) ∼ (1, 1). For ti ∈ [−1, 1] and pi ∈ X we have

d′j((t1, p1), (t2, p2)) = as in Lemma 8.3(232)

d′j((t1, p1), (t2, p∞)) = lim
k→∞

d′j((t1, p1), (t2, 1/k))(233)

d′j((t1, p∞), (t2, p∞)) = lim
k→∞

d′j((t1, 1/k), (t2, 1/k))(234)

Note that with this distance

d′j((−1, 0), (−1, p∞)) = lim
k→∞

d′j((−1, 0), (−1, 1/k))(235)

= lim
k→∞

d j(0, 1/k) = d j(0, 0) = 0(236)

d′j((1, 1), (1, p∞)) = lim
k→∞

d′j((1, 1), (1, 1/k))(237)

= lim
k→∞

d∞(1, 1/k) = d j(0, 1/k) = 0(238)

(239)

and that is why (−1, p∞) ∼ (−1, 0) and (1, p∞) ∼ (1, 1).
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