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Abstract. We show that it is possible to perturb arbitrary vacuum asymptotically flat
spacetimes to new ones having exactly the same energy and linear momentum, but with
center of mass and angular momentum equal to any preassigned values measured with
respect to a fixed affine frame at infinity. This is in contrast to the axisymmetric situation
where a bound on the angular momentum by the mass has been shown to hold for black
hole solutions. Our construction involves changing the solution at the linear level in a shell
near infinity, and perturbing to impose the vacuum constraint equations. The procedure
involves the perturbation correction of an approximate solution which is given explicitly.

1. Introduction

For asymptotically flat spacetimes with appropriate asymptotics there are several con-
served quantities which can be measured at spatial infinity. These include the total energy
and linear momentum, as well as the angular momentum and center of mass. When we
fix an affine frame at infinity the linear and angular momentum as well as the center of
mass become three vectors. It is natural to ask whether there are any constraints on these
quantities imposed by the Einstein equations. The positive mass theorem provides one such
constraint, namely that the energy-momentum vector is a forward pointing timelike vector.
In particular this says that the magnitude of the linear momentum vector is bounded above
by the energy. For the Kerr solutions which describe rotating stationary axisymmetric vac-
uum black holes, it is true that the angular momentum must satisfy such a bound. It has
been shown over the past several years by S. Dain [11] and P. T. Chruściel et al. [4, 7, 8]
that such an inequality is also satisfied by general axisymmetric black hole solutions of the
Einstein equations. The paper by X. Zhang [17] proves such an inequality under an energy
condition involving his definition of angular momentum density, but it appears that general
vacuum data sets do not satisfy this energy condition.

The main results of this paper show that there are no constraints on the angular momentum
and center of mass in terms of the energy-momentum vector for general vacuum solutions of
the Einstein equations. Precisely we fix an affine frame at infinity and we give an effective
procedure for adding a specified amount of angular momentum to a solution of the vacuum
Einstein equations, producing a new solution with specified angular momentum but with
only slightly perturbed energy-momentum vector. We obtain a similar result for the center
of mass. Then, by considering a family of initial data near the given one, and by doing
the construction continuously, we obtain a perturbation with arbitrarily specified angular
momentum and center of mass, while leaving the energy-momentum vector unchanged. One
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may think of these results as the pure gravity analogue of the addition to a Newtonian
system of a very small symmetrically placed mass far from an axis whose rotation imposes
a fixed amount of angular momentum. Similarly one can think of adding a small mass to a
Newtonian system which when translated far from the center of mass of the original system
produces a fixed change in the center of mass of the new system. From the point of view of
the dynamics of the vacuum Einstein equations we expect the angular momentum that we
add near spatial infinity to be radiated away and to have little effect on the final stationary
state of the system. We emphasize that our solutions with arbitrarily specified angular
momentum and center mass are complete manifolds, and we can arbitrarily specify the
angular momentum of the perturbed data while keeping the energy-momentum and center
of mass fixed. Without the completeness condition, there are exterior vacuum solutions with
arbitrary prescribed energy-momentum, angular momentum, and center of mass, such as
the example of a boosted slice in an exterior Kerr solution computed by Chruściel–Delay [6].
Also, certain N -body solutions constructed by Chruściel–Corvino–Isenberg [5] should have
large angular momentum, but this comes from orbital angular momentum, i.e. ~c×~p for large
~c. In particular, the center of mass is not fixed in their case.

From a technical point of view the reason it is possible to make these constructions is
that the angular momentum and center of mass are determined by terms in the expansion
of the solution which are of lower order than those which determine the energy and linear
momentum. The idea then is to make perturbations near infinity which affect only the lower
order terms in the expansion. We do this by explicitly constructing linear perturbations
supported in a shell near infinity which impose the required change in angular momentum
(or center of mass), and then by finding a solution of the vacuum constraint equations
which is sufficiently close to the perturbed system so that the change in angular momentum
(or center of mass) persists. This can be done in such a way that the energy and linear
momentum are changed by an arbitrarily small amount.

Let (M, g, π) be asymptotically flat in the sense that, outside a compact set, there exists
an asymptotically flat coordinate system {xi} so that

gij(x) = δij +O(|x|−1) πij(x) = O(|x|−2),
∂kgij(x) = O(|x|−1−k) for k = 1, 2 ∂πij(x) = O(|x|−3).

In addition, we assume that (M, g, π) satisfies the Regge–Teitelboim condition

gij(x)− gij(−x) = O(|x|−2) πij(x) + πij(−x) = O(|x|−3),
∂k(gij(x)− gij(−x)) = O(|x|−2−k) for k = 1, 2 ∂(πij(x) + πij(−x)) = O(|x|−4).

The notation f = O(|x|−a) means that |f | ≤ C|x|−a for a constant C. We remark that our
construction works for data (g, π) with weaker assumptions on the decay rates. For simplicity
of notation, we assume the decay rates above and do not consider here the question of optimal
decay conditions.
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Let E,C,P,J denote the energy, center of mass, linear momentum, and angular momen-
tum of (g, π). They are defined as limits of integrals over Euclidean spheres

E =
1

16π
lim
ρ→∞

∫
|x|=ρ

∑
i,j

(gij,i − gii,j)
xj

|x|
dσ0,

Cp =
1

16πE
lim
ρ→∞

∫
|x|=ρ

[
xp
∑
i,j

(gij,i − gii,j)
xj

|x|
−
∑
i

(gip
xi

|x|
− gii

xp

|x|
)

]
dσ0,

Pi =
1

8π
lim
ρ→∞

∫
|x|=ρ

∑
j

πij
xj

|x|
dσ0,

Ji =
1

8πE
lim
ρ→∞

∫
|x|=ρ

∑
j,k

πjkY
j
i

xk

|x|
dσ0,

where dσ0 is the area measure of the Euclidean sphere {|x| = ρ} and Yi = ∂
∂xi
× ~x (cross

product) for i = 1, 2, 3 are the rotation vector fields. Denote by E,C,P,J the energy, center
of mass, linear momentum, and angular momentum of (g, π).

We now give precise statements of the main theorems, where the definition of the weighted
Sobolev spaces W k,p

−q is provided in Section 3, and we assume p > 3 and q ∈ (1/2, 1). In our
construction, we fix an affine frame near infinity and measure all asymptotic quantities rela-
tive to this frame; in fact, we may fix an asymptotically flat coordinate system throughout.

Theorem 1. Let (g, π) be a nontrivial vacuum asymptotically flat initial data set with g =
v4δ outside a compact set and π(x) + π(−x) = O(|x|−1−2q). Given ~α ∈ R3 and ε > 0,
there exists a vacuum asymptotically flat initial data set (g, π) such that (g, π) is within the
ε-neighborhood of (g, π) in W 2,p

−q ×W
1,p
−1−q and

|E − E| ≤ ε, |C−C| ≤ ε, |P−P| ≤ ε,

and

|J− J− ~α| ≤ ε.(1.1)

For the center of mass we prove the following.

Theorem 2. Let (g, π) be a nontrivial vacuum asymptotically flat initial data set with g =
v4δ outside a compact set and π(x) + π(−x) = O(|x|−1−2q). Given ~γ ∈ R3 and ε > 0,
there exists a vacuum asymptotically flat initial data set (g, π) such that (g, π) is within the
ε-neighborhood of (g, π) in W 2,p

−q ×W
1,p
−1−q and

|E − E| ≤ ε, |J− J| ≤ ε, |P−P| ≤ ε

and

|C−C− ~γ| ≤ ε.(1.2)

By combining these two results we can change both the center of mass and angular mo-
mentum so that they are arbitrarily close to specified values while leaving the energy and
linear momentum essentially unchanged. The condition that g = v4δ can be removed by a
density theorem. Moreover, given a vacuum initial data set, there is a small perturbation
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with arbitrary specified angular momentum and center of mass and with the same mass and
linear momentum.

Theorem 3. Let (g, π) be a nontrivial vacuum initial data set satisfying the Regge–Teitelboim
condition. Given any constant vectors ~α0, ~γ0 ∈ R3, there exists a vacuum initial data set
(ḡ, π̄) within a small neighborhood of (g, π) in W 2,p

−q ×W
1,p
−1−q and

E = E, P = P,

and

J = J + ~α0, C = C + ~γ0.

In Section 2 we give an explicit construction of solutions of the linearized constraint
equations which satisfy a certain moment condition. Sections 3, 4, and 5 are devoted to the
proofs of the main theorems. We remark that the constructions of Section 2 are explicit,
while the method of solving the exact constraint equations from the approximate solution
involves constructing a small solution of an elliptic system with leading order term the
diagonal Laplace equation. It should be possible to numerically approximate the resulting
solutions to a high degree of accuracy.

2. Compactly supported solutions of the linearized constraints

Recall that the vacuum constraint equations for initial data (g, π) may be written

R(g) +
1

2
(Trgπ)2 − |π|2 = 0, divg(π) = 0,

where πij = Kij−Trg(K)gij is the momentum tensor. In general, we consider the constraint
map Φ defined by

Φ(g, π) = (R(g) +
1

2
(Trgπ)2 − |π|2, divg(π)).

The vacuum constraint equations, linearized at the trivial data (δ, 0), become

Lσ :=
∑
i,j

(σij,ij − σii,jj) = 0, div(τ) = 0,

for symmetric (0, 2) tensors (σ, τ). In this section we will construct solutions of the linearized
constraint equations which are compactly supported in the shell A1 = {x : 1 < |x| < 2}
contained in R3 and which have certain specified moment conditions with respect to rotation
vector fields. We use the Einstein summation convention and sum over repeated indices;
though, sometimes we employ summation symbols for clarity.

We write the Euclidean metric on A1 in spherical coordinates dr2 + r2g̃abdx
adxb where g̃ is

the standard round metric on S2. The coordinates are labeled by r = x0 and θ, φ = x1, x2.
The ranges for the indices are i, j, k, l, ... = 0, 1, 2, and a, b, c, d, e, ... = 1, 2. If α, β are
one-forms, we define the symmetric product α � β to be the symmetric (0, 2) tensor whose
components are

(α� β)ij =
1

2
(αiβj + αjβi).

We first impose the following ansatz for our solutions.
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Lemma 2.1. Suppose that q and Q are functions of r, α̃ is a one-form on S2, and τ̃ is a
trace-free symmetric (0, 2) tensor on S2. Then τ = 2qα̃� dr+Qτ̃ is a trace-free symmetric
(0, 2) tensor on A1. The condition div(τ) = 0 becomes

d̃ivα̃ = 0 and (r2q)′α̃ +Q(d̃ivτ̃) = 0,

where d̃iv is the divergence operator of S2 on tensors.
Suppose that p and P are functions of r, η̃ is a one-form on S2, and σ̃ is a trace-free

symmetric (0, 2) tensor on S2. Then σ = 2pη̃ � dr + Pσ̃ is a trace-free symmetric (0, 2)
tensor on A1, and Lσ = 0 if

2r(rp)′d̃ivη̃ + P (d̃ivd̃ivσ̃) = 0.

This lemma follows directly from the following two computational lemmas. For a coordi-
nate system xi on R3, denote by gijdx

idxj the Euclidean metric.

Lemma 2.2. Let h be any symmetric (0, 2) tensor on R3, then

(divh)i =
1
√
g

∂

∂xk
(
√
ghki ) +

1

2
hjk

∂

∂xi
(gjk).

Proof. Let V i be any vector field. We have V i(hki );k = (V ihki );k − hki V i
;k. Now

(V ihki );k =
1
√
g

∂

∂xk
(V ihki

√
g) = V i 1

√
g

∂

∂xk
(
√
ghki ) + hki

∂V i

∂xk
.

Therefore V i(hki );k = V i 1√
g

∂
∂xk

(
√
ghki )− hki ΓiklV l and then

(divh)i =
1
√
g

∂

∂xk
(
√
ghki )− hkl Γlki.

Lastly, we plug in the formula for Γkij. �

Now we apply this to the spherical coordinates

gijdx
idxj = dr2 + r2dθ2 + r2 sin2 θdφ2 = dr2 + r2g̃abdx

adxb

and write h = h00dr
2 + 2h0adx

adr + habdx
adxb and α = α0dr + αadx

a.

Lemma 2.3. Let h be a symmetric (0, 2) tensor and α a one-form on R3, then

divh = [r−2
∂

∂r
(r2h00) + r−2

1√
g̃

∂

∂xa
(
√
g̃g̃abh0b)− r−3g̃abhab]dr

+ {r−2 ∂
∂r

(r2ha0) + r−2[
1√
g̃

∂

∂xb
(
√
g̃g̃bchac) +

1

2
hbc

∂

∂xa
g̃bc]}dxa

and

divα = r−2
∂

∂r
(r2α0) + r−2

1√
g̃

∂

∂xb
(
√
g̃g̃abαa).

We shall take the following ansatz on h that h00 = 0 and g̃abhab = 0. We also assume that
h0a = p(r)η̃a and hab = P (r)h̃ab for a one-form η̃ and a symmetric (0, 2) tensor h̃ on S2; that
is, we have

h = 2p(r)η̃ � dr + P (r)h̃.
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We then have
divh = (r−2p)(d̃ivη̃)dr + r−2(r2p)′η̃ + r−2P d̃ivh̃

and
divdivh = 2r−3(rp)′(d̃ivη̃) + r−4P (d̃ivd̃ivh̃).

Hence, Lemma 2.1 follows directly from the above two identities.
In particular, if we consider the tensor τ of the following expression

(2.1) τ = −2qd̃iv(τ̃)� dr + (r2q)′τ̃ .

Then τ satisfies divτ = 0 on A1 if

(2.2) d̃ivd̃ivτ̃ = 0 on S2.

Also, we consider σ as follows:

(2.3) σ = −2pd̃ivσ̃ � dr + 2r(rp)′σ̃.

Then σ satisfies Lσ = 0 on A1 for any trace-free symmetric (0, 2) tensor σ̃ on S2.
In the following, we show that there are nontrivial solutions to (2.2). We can start from

any one-form η̃ on S2 and construct a trace-free symmetric (0, 2) tensor δ̃∗η̃ on S2 by defining

(δ̃∗η̃)ab =
1

2
(η̃a;b + η̃b;a − g̃cdη̃c;dg̃ab).

We need the following computational result.

Lemma 2.4.

d̃ivδ̃∗η̃ = −1

2
(dd∗ + d∗d)η̃ + η̃.

In particular, if u is a function on S2, then

d̃ivδ̃∗du =
1

2
d(∆u+ 2u),

and

d̃ivδ̃∗(∗du) =
1

2
∗ d(∆u+ 2u).

Proof. We recall that for one-forms on S2, we have d∗ = − ∗ d∗, and for a function u,
d∗du = −∆u. We assume η̃ = du and compute in an orthonormal frame:

(d̃iv(δ̃∗du))1 =
1

2
(u1;11 − u2;21) + u1;22.

On the other hand, (1
2
(dd∗ + d∗d)du)1 = −1

2
(∆u)1 = −1

2
(u1;11 + u2;21). Therefore,

(d̃ivδ̃∗du)1 + (
1

2
(dd∗ + d∗d)du)1 = u1;22 − u2;21.

At last, we use the commutation formula ub;ab = ub;ba + ua for a 6= b on S2. Other formulae
can be checked similarly. �

The next lemma shows how solutions of Equation (2.2) can be constructed:

Lemma 2.5. Suppose that α̃ is any one-form on S2. Then τ̃ = δ̃∗α̃ is a trace-free symmetric

(0, 2) tensor on S2. Moreover, if α̃ = ∗du for a function u on S2, then τ̃ satisfies d̃ivd̃ivτ̃ = 0.
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Proof. This follows from the formula of Lemma 2.4,

d̃ivτ̃ =
1

2
∗ d(∆u+ 2u),

together with the fact that (d∗)2 = 0. �

We need the following computational result.

Lemma 2.6. Suppose that τ = 2qα̃ � dr + Qτ̃ , σ = 2pη̃ � dr + Pσ̃, and Y = Y a ∂
∂xa

is
tangent to S2. Then(

1

2
τij,lY

l + τilY
l
,j

)
σij

= pqr−2(α̃b;aY
a + α̃aY

a
;b )η̃cg̃

bc +
1

2
PQr−4(τ̃bc;aY

a + τ̃abY
a
;c + τ̃acY

a
;b )g̃

bdσ̃deg̃
ec,

where α̃b;a, τ̃bc;a, and Y a
;b denote covariant derivatives of α̃, τ̃ , and Y with respect to the

standard metric g̃ab on S2.

Proof. Direct computation. �

We are finally in a position to prove the main results of this section.

Theorem 2.1. Given any ~λ = (λ1, λ2, λ3), there exist symmetric (0, 2) tensors σ, τ ∈
C∞0 (A1) with σ(x) = σ(−x) and τ(x) = τ(−x) satisfying

Lσ = 0∑
i

τij,i = 0, for j = 1, 2, 3,(2.4)

so that ∫
A1

[
1

2
τij,l(Yk)

l + τil(Yk)
l
,j

]
σij dx = λk(2.5)

for k = 1, 2, 3 where Yk = ∂
∂xk
× ~x (cross product).

Remark. By a direct computation, the integrand in (2.5) equals 1
2
(LYkτ)ijσ

ij, where LYkτ
is the Lie derivative of τ along Yk on R3. Thus, if τ is axisymmetric with respect to Yk, i.e.
LYkτ = 0, then (2.5) is always zero.

Proof. We first show how to make the integral on the left of (2.5) for k = 1 nonzero. To
simplify notation for this purpose we denote Y1 by Y . We choose τ of the form (2.1) for

some τ̃ = δ̃∗ ∗ du, where u is an even function on S2. By Lemma 2.1 and Lemma 2.5, τ
satisfies Equation (2.4) and has the desired symmetry τ(x) = τ(−x). We take σ of the form
(2.3) for a symmetric (0, 2) tensor σ̃ to be determined later. By Lemma 2.6, the integral in
question can be written as

(

∫ 2

1

pqr−2dr)

∫
S2

(α̃b;aY
a + α̃aY

a
;b )η̃cg̃

bcdS2

+ (

∫ 2

1

1

2
PQr−4dr)

∫
S2

(τ̃bc;aY
a + τ̃abY

a
;c + τ̃acY

a
;b )g̃

bdσ̃deg̃
ecdS2,
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for α̃ = −d̃iv τ̃ , η̃ = −d̃iv σ̃, P = 2r(rp)′, and Q = (r2q)′. We can choose p and q to be any

compactly supported functions on the interval (1, 2) so that (
∫ 2

1
pqr−2dr) and (

∫ 2

1
1
2
PQr−4dr)

are arbitrary. It suffices to choose σ̃ to make the following integral nonzero∫
S2

(τ̃bc;aY
a + τ̃abY

a
;c + τ̃acY

a
;b )g̃

bdσ̃deg̃
ecdS2 6= 0.

To achieve this, we take
σ̃bc = τ̃bc;aY

a + τ̃abY
a
;c + τ̃acY

a
;b

and define σ by Equation (2.3). Since Y is invariant under x 7→ −x, σ defined in this way
has the desired symmetry and satisfies Lσ = 0. It is not hard to check that σ̃ = LY τ̃ , the
Lie derivative of τ̃ with respect to Y on S2. Thus, we can take an even function u (e. g. the
restriction of any homogeneous polynomial of even degree) so that τ̃bc;aY

a + τ̃abY
a
;c + τ̃acY

a
;b

is nonzero.
To achieve the desired conclusion, we consider the linear functional T(σ,τ)(v) given by

the left-hand side of (2.5) with vector field Y = v × ~x. Since this is a nonzero linear
functional we may choose a positively oriented orthonormal basis {e1, e2, e3} so that the

vector (T(σ,τ)(e1), T(σ,τ)(e2), T(σ,τ)(e3)) is proportional to ~λ, and after multiplication of τ by

a constant we may assume the vector is equal to ~λ. It follows that there is a rotation R
of R3 so that T(σ,τ)(R( ∂

∂xk
)) = λk for k = 1, 2, 3. It follows that (2.5) holds for the pair

((R−1)∗(σ), (R−1)∗(τ)) since we clearly have T(S∗σ,S∗τ) = T(σ,τ) ◦ S−1 for any rotation S.
�

We will need a corresponding result which will be used to specify the center of mass. This
involves the construction of solutions of Lσ = 0 satisfying a moment condition.

Theorem 2.2. Given any ~β = (β1, β2, β3) ∈ R3, there exist a trace-free and divergence-free
symmetric (0, 2) tensor σ ∈ C∞0 (A1) satisfying Lσ = 0 so that∫

A1

xp
∑
i,j,k

(σij,k)
2 dx = βp(2.6)

for p = 1, 2, 3.

Proof. We first show how to make the integral on the left of (2.6) nonzero for p = 1. By
starting with a nonzero function u supported in the first octant, we find from Lemma 2.5
and (2.1) a nonzero trace-free symmetric (0,2) tensor σ in C∞0 (A1) satisfying div(σ) = 0.
Then, in particular Lσ = 0. Because σ is supported in the first octant, this implies∫

A1

x1
∑
i,j,k

(σij,k)
2 dx > 0.

We then let Tσ be the linear functional on R3 given by

Tσ(v) =

∫
A1

x · v
∑
i,j,k

(σij,k)
2 dx.

Since Tσ is nonzero, there is a positively oriented orthonormal basis {e1, e2, e3} for which

the vector defined by (Tσ(e1), Tσ(e2), Tσ(e3)) is proportional to ~β. Replacing σ with a scalar
multiple we may assume that Tσ(ep) = βp for p = 1, 2, 3. Thus there is a rotation R
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with R( ∂
∂xp

) = ep so that Tσ(R( ∂
∂xp

)) = βp for p = 1, 2, 3. Since for a rotation S we have
TS∗σ = Tσ ◦ S−1 it follows that (R−1)∗σ satisfies the required condition (2.6). �

3. Specifying the angular momentum

We first state a general analytic result which constructs new initial data sets from given
ones. Let Lσ :=

∑
i,j(σij,ij−σii,jj) be the linearized (at the Euclidean metric) scalar curvature

map which goes from smooth symmetric (0, 2) tensors to smooth functions. Denote by W k,p
−q

the weighted Sobolev spaces defined as follows. We say f ∈ W k,p
−q if

‖f‖Wk,p
−q

:=

∫
M

∑
|α|≤k

(∣∣Dαf
∣∣ρ|α|+q)p ρ−3 dvolg

 1
p

<∞,

where α is a multi-index and ρ is a continuous function with ρ = |x| on the region where the
asymptotically flat coordinate system {xi} is defined. When p =∞,

‖f‖Wk,∞
−q

=
∑
|α|≤k

ess sup
M
|Dαf |ρ|α|+q.

We assume k = 1 or 2, q ∈ (1/2, 1), and p > 3. By our assumption (g, π) ∈ W 2,p
−q ×W

1,p
−1−q.

In the following, the notation f = O(r−a) means that |f | ≤ Cr−a, |∂f | ≤ Cr−a−1 for
some constant C independent of k and the analogous conditions on successive derivatives
as needed. We remark that the following results would hold similarly for any p > 3/2, but
the “O”-notation below would mean the decay in weighted Sobolev norms. Here we assume
p > 3 because the weighted Sobolev norms can be replaced by pointwise estimates using the
Sobolev imbedding theorem.

Let r := |x|. Denote the shell by Ak = {k < r < 2k} and denote by C∞0 (Ak) the set of
functions or tensors which are compactly supported in Ak.

Proposition 3.1. Let the symmetric (0, 2) tensors σ, τ ∈ C∞0 (A1) satisfy the linearized
constraint equations

Lσ = 0∑
i

τij,i = 0 for j = 1, 2, 3.

Define σk, τ k ∈ C∞0 (Ak) by

σk = k−1σ(x/k), and τ k = k−2τ(x/k).

Then given any vacuum initial data set (M, g, π) with decay rate g−δ = O(r−1), π = O(r−2),
and any fixed q ∈ (1/2, 1), there exists a sequence of vacuum initial data sets {(gk, πk)} so
that for k large and outside a fixed compact set (independent of k),

gkij =

(
1 +

Ak

r

)
gij + σkij +O(r−2q)(3.1)

πkij = πij + τ kij +
1

r3

[
−Bk

i xj −Bk
j xi +

∑
l

Bk
l xlδij

]
+O(r−1−2q),(3.2)
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where Ak and (Bk
1 , B

k
2 , B

k
3 ) are constants. The initial data sets {(gk, πk)} are small pertur-

bations of (g, π) in the weighted Sobolev spaces; in fact,

‖g − gk‖W 2,p
−q
→ 0, ‖π − πk‖W 1,p

−1−q
→ 0, as k →∞.

Moreover,

Ek → E and Pk → P as k →∞.(3.3)

Proof. Let ĝk = g + σk and π̂k = π + τ k. Then (ĝk, π̂k) satisfies the constraint equations
Φ(ĝk, π̂k) = (0, 0) everywhere in M \Ak and Φ(ĝk, π̂k) = (O(r−4), O(r−4)) in Ak. We denote

(LgX)ij = Xi;j + Xj;i − (divgX)gij

for any vector field X and metric g. By the proof of [10, Theorem 1], there exist (uk,Xk) on
M and (hk, wk) with compact supports (uniformly in k) such that

gk = (uk)4ĝk + hk, and πk = (uk)2(π̂k + LĝXk) + wk

satisfy Φ(gk, πk) = 0 for all k large, and

‖uk − 1‖W 2,p
−q
→ 0, ‖Xk‖W 2,p

−q
→ 0, ‖hk‖W 2,p

−q
→ 0, ‖wk‖W 1,p

−q
→ 0,(3.4)

as k → ∞. The constraint equations imply ∆uk = O(r−2−2q) and ∆(Xk)i = O(r−2−2q). It
follows that

uk = 1 +
Ak

4r
+O(r−2q), and (Xk)i =

Bk
i

r
+O(r−2q).

Therefore, (3.1) and (3.2) follow, and the convergence of (3.3) can be derived as in [10]. �

For the rest of the section, we consider the special case of Proposition 3.1 when g = v4δ
outside a compact set so we have g =

(
1 + 2E

r

)
δij+O(r−2). We also assume that π = O(r−2),

π(x) + π(−x) = O(r−1−2q). That any initial data can be approximated by such data follows
from [10]. Note that the asymptotic oddness condition is the Regge–Teitelboim condition
[16, 1] required for the existence of J. Therefore, near infinity, (gk, πk) satisfy the conditions

gkij = (uk)4(gij + σkij) =

(
1 +

2E + Ak

r

)
δij + σkij +O(r−2q)(3.5)

πkij = (uk)2(π + τ k + LĝXk)ij

= πij + τ kij +
1

r3

[
−Bk

i xj −Bk
j xi +

∑
l

Bk
l xlδij

]
+O(r−1−2q).(3.6)

Proof of Theorem 1. Let (g, π) be a vacuum initial data set satisfying the above conditions.

Choose σ and τ satisfying the assumptions in Theorem 2.1 with ~λ = −8π~α. There exist
vacuum initial data sets (gk, πk) satisfying (3.5) and (3.6) by Proposition 3.1, and |Ek−E| ≤ ε
and |Pk−P| ≤ ε. It remains to prove the desired properties of the center of mass and angular
momentum. In the following, we suppress the superscript k of gk and πk whenever it is clear
from the context.
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We assume that ~α = (α1, α2, α3). We denote by Yp the Euclidean Killing vector field
Yp = ∂

∂xp
× ~x for p = 1, 2, 3. Because of the asymptotics of (g, π),

E Jp =
1

8π
lim
ρ→∞

∫
r=ρ

∑
i,j

πij(Yp)
ixj
r
dσ0

=
1

8π
lim
ρ→∞

∫
r=ρ

πij(Yp)
iνj dσg,

where ν and dσg are respectively the outward unit normal vector and the area measure of
{r = ρ} with respect to g. To shorten notation we do the following estimates using Y in
place of Yp. By the divergence theorem, assuming ρ0 � k and 2k < ρ,∫

r=ρ

πijY
iνj dσg =

∫
ρ0≤r≤ρ

glj(πilY
i);j dvolg +

∫
r=ρ0

πijY
iνj dσg.

Because τ k vanishes on {r = ρ0},∫
r=ρ0

πijY
iνj dσg =

∫
r=ρ0

∑
i,j

(uk)2(π + LĝXk)ijY
iνj dσg.

Although the absolute value of the last integrand is O(ρ−10 ) which would not have a finite
limit, the asymptotic symmetry conditions say that π is odd and the term LĝXk is also
asymptotically odd, and hence the leading order term of the integrand is odd causing the
limit to be finite. In fact, we have for k large enough,∫

r=ρ0

∑
i,j

(uk)2(π + LĝXk)ijY
iνj dσg

=

∫
r=ρ0

∑
i,j

πijY
iνj dσg +

∫
r=ρ0

∑
i,j

(LĝXk)ijY
iνj dσg(3.7)

+

∫
r=ρ0

∑
i,j

[(uk)2 − 1](π + LĝXk)ijY
iνj dσg(3.8)

= 8πEJp +O(ρ1−2q0 ).

Clearly, the first integral in (3.7) is 8πEJp +O(ρ−10 ). For the second integral in (3.7), we use
(3.4) and choose k large so that |LĝXk| is small, say less than ρ−40 . The integral in (3.8) is

O(ρ1−2q0 ) by (3.5), (3.6), and the asymptotic symmetry of π.
To estimate the interior integral, by the constraint equation gljπil;j = 0 and the condition

that Y is a Euclidean Killing vector field,

glj(πilY
i);j = (glj − δlj)πilY i

,j + gljπilY
sΓ

i

js.(3.9)

By (3.5), (3.6), and σk(x) = σk(−x), the integral of the first term on the right-hand side is∫
ρ0≤r≤ρ

(glj − δlj)πilY i
,j dvolg = −

∫
Ak

∑
i,j,l

σkijτ
k
ilY

l
,j dx+O(ρ1−2q0 )

= −
∫
A1

∑
i,j,l

σijτilY
l
,j dx+O(ρ1−2q0 ),
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where we use π(x) + π(−x) = O(r−1−2q) and σk(x) = σk(−x) to estimate the error terms.
For example, for some of the error terms,∫

ρ0≤r≤ρ
−2EAk

r

∑
i,j,l

δljπilY
i
,j dvolg =

∫ ρ

ρ0

O(r−2−2q) r2dr = O(ρ1−2q0 ),

∫
ρ0≤r≤ρ

−
∑
i,j,l

σkljπilY
i
,j dvolg =

∫ 2k

k

O(k−1r−1−2q) r2dr = O(k1−2q) = O(ρ1−2q0 ).

To estimate the integral of the second term on the right hand-side of (3.9), we again use
(3.5), (3.6) and asymptotic symmetry to derive the first equality.∫

ρ0≤r≤ρ
gjlπilY

sΓ
i

js dvolg =
1

2

∫
Ak

∑
i,j,l

τ kijY
lσkij,l dx+O(ρ1−2q0 )

= −1

2

∫
Ak

∑
i,j,l

σkijτ
k
ij,lY

l dx+O(ρ1−2q0 ) = −1

2

∫
A1

∑
i,j,l

σijτij,lY
l dx+O(ρ1−2q0 ),

where in the second-to-last identity, we integrate by parts and use the fact that σk and τ k

vanish on the boundary and that Y is divergence-free.
Combining the above identities, we derive

8πE Jp = 8πEJp −
∫
A1

∑
i,j,l

[
1

2
τij,l(Yp)

l + τil(Yp)
l
,j

]
σij dx+O(ρ1−2q0 ).

Then we choose ρ0 large so that the error term is less than ε. For k � ρ0 large enough, we

prove that (gk, πk) satisfies (1.1) from Theorem 2.1 applied with ~λ = −8π~α.
We show that the center of mass of (g, π) remains almost unchanged during the process.

For p = 1, 2, 3 we have the components of C defined by

C
p

=
1

16πE
lim
ρ→∞

∫
r=ρ

[
xp
∑
i,j

(gij,i − gii,j)
xj

r
−
∑
i

(
gip
xi

r
− gii

xp

r

)]
dσ0.

By the divergence theorem,

16πEC
p

= lim
ρ→∞

∫
ρ0≤r≤ρ

xp
∑
i,j

(gij,ij − gii,jj) dx

+

∫
r=ρ0

[
xp
∑
i,j

(gij,i − gii,j)
xj

r
−
∑
i

(
gip
xi

r
− gii

xp

r

)]
dσ0.(3.10)

Because
∑

i,j(gij,ij−gii,jj) is the leading order term of the scalar curvature, it can be replaced

by the lower order terms such as |π|2 and (Dg)2 using the constraint equations. Then by
(3.5), (3.6), and the symmetry σk(x) = σk(−x), the interior integral above is O(ρ1−2q0 ).
Similarly, we have

16πECp =

∫
r=ρ0

[
xp
∑
i,j

(gij,i − gii,j)
xj

r
−
∑
i

(
gip
xi

r
− gii

xp

r

)]
dσ0 +O(ρ−10 ).(3.11)
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Moreover, because g = (uk)4g and uk is close to 1 on {r = ρ0} for k large enough, the
difference of the boundary integrals on {r = ρ0} is O(ρ−10 ). Therefore, for a fixed ρ0 large
and for k � ρ0 large enough, we have

|C−C| ≤ ε.

�

4. Specifying the center of mass

As in the previous section we assume that g = v4δ outside a compact set and π = O(r−2)
and π(x) + π(−x) = O(r−1−2q). We apply Proposition 3.1 with τ = 0 and σ chosen by
Theorem 2.2 to be a solution of Lσ = 0 satisfying the moment condition (2.6).

Proof of Theorem 2. By Proposition 3.1, |Ek − E| ≤ ε for k large. Since τ = 0, the proof
that the angular momentum satisfies |J− J| ≤ ε follows as in the previous section.

To estimate the change in the center of mass we use (3.10), (3.11), and the argument
following them. For p = 1, 2, 3 we have

16π
(
EC

p − ECp
)

= lim
ρ→∞

∫
ρ0≤r≤ρ

xp
∑
i,j

(gij,ij − gii,jj) dx+O(ρ−10 ).

Because σk(x) 6= σk(−x), the interior term above is not of lower order. Let R denote
the scalar curvature of g. Then from the constraint equations, we have R = O(r−4) and
R(x)−R(−x) = O(r−3−2q). By [13, Lemma 3.5],∫

ρ0≤r≤ρ
xp
∑
i,j

(gij,ij − gii,jj) dx =

∫
ρ0≤r≤ρ

xpRdx−
∫
ρ0≤r≤ρ

xpEg dx+O(ρ−10 ),

where

Eg =−
∑
i,j,l

(gil − δil)(2gij,lj − gil,jj − gjj,li)

+
∑
i,j,l

[
− gjl,jgil,i + gjl,jgii,l +

3

4
gij,lgij,l −

1

4
gjj,lgii,l −

1

2
gij,lgil,j

]
.

Recall that σk ∈ C∞0 (Ak) is trace-free and divergence-free. By (3.5), the above integral is
equal to the following, up to an error term of order O(ρ1−2q0 ),∫

Ak

xp

[∑
i,l

−2σkil

(
2E + Ak

r

)
,li

−
∑
i,l,j

σkilσ
k
il,jj

]
dx

−
∫
Ak

3

4
xp
∑
i,j,l

[(
2E + Ak

r

)
,l

δij + σkij,l

]2
dx

+

∫
Ak

1

2
xp
∑
i,j,l

[(
2E + Ak

r

)
,l

δij + σkij,l

][(
2E + Ak

r

)
,j

δil + σkil,j

]
dx

=

∫
Ak

xp
∑
i,l,j

[
−σkilσkil,jj −

3

4
σkij,lσ

k
ij,l

]
dx =

∫
A1

xp
∑
i,j,l

1

4
(σij,l)

2 dx,
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where in the last line we use integration by parts. We may then apply Theorem 2.2 with
~β = 64πE~γ to obtain the required condition (1.2) on the center of mass. �

5. Proof of Theorem 3

In Theorem 1 and Theorem 2 we assumed that g = v4δ outside a compact set and π =
O(r−2), π(x) + π(−x) = O(r−1−2q). Using a density theorem [12], we prove below that the
condition can be replaced by the weaker Regge–Teitelboim condition.

In this section, we fix the constant p > 3 and the constant q ∈ (1/2, 1).

Theorem 5.1. Let (g, π) be a nontrivial vacuum initial data set satisfying the Regge–
Teitelboim condition. Given ~α,~γ ∈ R3 and given ε > 0, there exists a vacuum initial data
set (g̃, π̃) with ‖g̃ − g‖W 2,p

−q
≤ ε, ‖π̃ − π‖W 1,p

−1−q
≤ ε, so that

|Ẽ − E| ≤ ε, |P̃−P| ≤ ε,(5.1)

and

|J̃− J− ~α| ≤ ε, |C̃−C− ~γ| ≤ ε.(5.2)

Proof. By the density theorem in [12], given the vacuum initial data set (g, π) satisfying
the Regge–Teitelboim condition and any ε > 0, there exists a vacuum initial data (ǧ, π̌)
with ǧ = v4δ outside a compact set and π̌(x) = O(r−2), π̌(x) + π̌(−x) = O(r−1−2q), so that
‖ǧ − g‖W 2,p

−q
≤ ε, ‖π̌ − π‖W 1,p

−1−q
≤ ε. Moreover,

|Ě − E| ≤ ε

3
, |P̌−P| ≤ ε

3
, |J̌− J| ≤ ε

3
, |Č−C| ≤ ε

3
.

Then we apply the construction in the proof of Theorem 1 to (ǧ, π̌). Given ~α = (α1, α2, α3) ∈
R3, there exist symmetric (0, 2) tensors σ, τ ∈ C∞0 (A1) satisfying∫

A1

[
1

2
τij,l(Yp)

l + τil(Yp)
l
,j

]
σij dx = −8παp,(5.3)

where rotation vector fields Yp = ∂
∂xp
× ~x. Let σk(x) = k−1σ(x/k) and τ k(x) = k−2σ(x/k).

By Proposition 3.1, there exists a large integer k so that (ĝk, π̂k):

ĝk = (uk)4(ǧ + σk) + hk,

π̂k = (uk)2(π̌ + τ k + L(g+σk)X
k) + wk

satisfies the vacuum constraint equations, where (uk,Xk) and (hk, wk) arise from solving the
linearized constraint equations. They satisfy the decay condition (3.4), and the (hk, wk) have
compact support. Then, from Theorem 1, we have

|Ê − Ě| ≤ ε

3
, |P̂− P̌| ≤ ε

3
, |Ĉ− Č| ≤ ε

3
,

and

|Ĵ− J̌− ~α| ≤ ε

3
.
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We suppress the superscript k of (ĝk, π̂k) in the following. Clearly (ĝ, π̂) satisfies the condition
in Theorem 2, namely ĝ = (uv)4δ outside a compact set and π̂ = O(r−2), π̂(x) + π̂(−x) =
O(r−1−2q). Let σ̂ be a symmetric (0, 2) tensor satisfying∫

A1

xp
∑
i,j,k

(σ̂ij,k)
2 dx = 64πÊγp.(5.4)

Let σ̂l(x) = l−1σ̂(x/l). By the construction in the proof of Theorem 2, there exists an integer
l� k so that

g̃l = (ûl)4(ĝ + σ̂l) + ĥl,

π̃l = (ûl)2(π̂ + L(ĝ+σ̂l)X̂
l) + ŵl

satisfies the vacuum constraint equations, where (ûl, X̂l) and (ĥl, ŵl) are from solving the
linearized constraint equations as above. Moreover,

|Ẽ − Ê| ≤ ε

3
, |P̃− P̂| ≤ ε

3
, |J̃− Ĵ| ≤ ε

3
,

and
|C̃− Ĉ− ~γ| ≤ ε

3
.

Then (5.1) and (5.2) follow by combining the above inequalities. �

We can further perturb (g̃, π̃) so that the energy-momentum vector equals to that of (g, π),
while changing the angular momentun and center of mass by only a small amount.

Proposition 5.1. Let (g, π) be a nontrivial vacuum initial data set satisfying the Regge–
Teitelboim condition. Given ~α,~γ ∈ R3 and ε > 0, there exists a vacuum initial data (ḡ, π̄)
satisfying ‖ḡ − g‖W 2,p

−q
≤ ε and ‖π̄ − π‖W 1,p

−1−q
≤ ε so that E = E and P = P and

|J− J− ~α| ≤ ε, and |C−C− ~γ| ≤ ε.

Proof. Let (g̃, π̃) be the initial data constructed in Theorem 5.1. Let (ḡ, π̄) be the vacuum
initial data from scaling ḡ = λ2g̃ and π̄ = λπ̃, where the constant λ is a positive constant and
λ2 = (E2−|P|2)/(Ẽ2−|P̃|2). Then, by straightforward computations, we have (E,P,J,C) =

λ(Ẽ, P̃, J̃, C̃) and then

E
2 − |P|2 = E2 − |P|2.

Notice that by (5.1), ∣∣∣(Ẽ2 − |P̃|2)− (E2 − |P|2)
∣∣∣ ≤ 2ε(E + |P|) + ε2.

Therefore, since E > |P| by the positive mass theorem, we divide the above inequality by
E2 − |P|2. Then

|λ−2 − 1| ≤ 2ε

E − |P|
+

ε2

E2 − |P|2
.

Because E and P are fixed, we can choose k, l in the proof of Theorem 5.1 large enough so
that λ is close to 1. Therefore, (E,P,J,C) is close to (Ẽ, P̃, J̃, C̃) and hence to (E,P,J,C).
Because E is close to E, we then boost the data (ḡ, π̄) by a small angle so that E = E,
and then |P| = |P| (the existence of such boosted slice is proven in [3]). By rotating
the asymptotically flat coordinates, we can make P = P. Also, notice that the angular
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momentum and center of mass only change a small amount after these transformations.
(The transformation formulas of these quantities under the Poincaré transformations can be
found in, for example, [6, Appendix E].) �

To prove Theorem 3, we need the following degree argument.

Lemma 5.2. Fix the constant a > 0. Let Ba(z0) ⊂ Rn denote the closed ball centered at z0
with radius a. Let f : Ba(z0)→ Rn be a continuous map satisfying, for any z ∈ Ba(z0),

|f(z)− z| ≤ a.

Then f−1(z0) is non-empty. More precisely, either f(z) = z0 for some z ∈ ∂Ba(z0) or the
degree of f at z0 is one.

Proof. By scaling, we only need to prove the case when a = 1. We define the continuous
homotopy between f and the identity map for 0 ≤ t ≤ 1:

h(z, t) = (1− t)z + tf(z).

For a boundary point z ∈ ∂B1(z0),

(h(z, t)− z0) · (z − z0) = [(z − z0) + t(f(z)− z)] · (z − z0)
≥ |z − z0|2 − t|f(z)− z||z − z0| ≥ 1− t.

Then either f(z) = z0 for some z ∈ ∂B1(z0) or h(z, t) 6= z0 for all 0 ≤ t ≤ 1 and for all
z ∈ ∂B1(z0). In particular, the latter case implies that z0 stays in the range of h(·, t) for all
t ∈ [0, 1]. Therefore, f−1(z0) is non-empty. �

Proof of Theorem 3. Denote the given constant vector (~α0, ~γ0) by z0 ∈ R6. We may without
loss of generality prove only for the case |~α0| 6= 0 and |~γ0| 6= 0, for if ~α0 (or ~γ0) is the zero
vector, we apply the theorem twice to a non-zero constant vector ~v and then to −~v. We
define the map f : Bε(z0) ⊂ R6 → R6 by

f(~α,~γ) = (J− J,C−C),

where J and C are the angular momentum and center of mass of (ḡ, π̄) constructed in
Proposition 5.1. By the construction,

|f(z)− z| ≤ ε.

Once we verify that f is continuous, we apply Lemma 5.2 to obtain f(~α,~γ) = (~α0, ~γ0) for
some (~α,~γ) and complete the proof of Theorem 3.

Claim. The map f is continuous.

Proof. Given non-zero vectors (~α0, ~γ0), let (σ, τ, σ̂) be the symmetric (0, 2) tensors and k, l
be the integers in the proof of Theorem 5.1 for (~α0, ~γ0). (Notice that k, l may be chosen large
depending only on ~α0, ~γ0, and ε.)

Assume that (~α,~γ) is another pair of constant vectors. We fix the symmetric (0, 2) tensors
σ, τ, σ̂ and the annular shells determined by k and l. We choose the symmetric (0, 2) tensors
for ~α,~γ from σ, τ, σ̂ and apply the construction in Theorem 5.1 over the annular shells
determined by k and l.
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That the choice of the symmetric (0, 2) tensors depends continuously on ~α can be seen
as follows: Let R1 : R3 → R3 be a rotation so that R1(~α0) is parallel to ~α. The symmetric
(0, 2) tensors defined by √

|~α|
|~α0|

(R−11 )∗σ,

√
|~α|
|~α0|

(R−11 )∗τ

satisfy the corresponding condition (5.3) for ~α on the right-hand side. It is easy to check
that at each point ∣∣∣∣

√
|~α|
|~α0|

(R−11 )∗σ − σ
∣∣∣∣ ≤ |~α− ~α0|

(
1

2|~α0|
|σ|+ 3

2
|Dσ|

)
.

Similar estimate can be derived for the other tensor τ . For ~γ and the integral (5.4), we can
also choose the tensor corresponding to σ̂ in the same fashion. It is straightforward to check
that the rest of the construction is continuous, and hence f is continuous.

�

Corollary 5.3. Given any constant vector (E,P,J,C) ∈ R10 with E > |P|, there exists a
smooth and complete asymptotically flat vacuum initial data set whose energy, linear mo-
mentum, angular momentum, and center of mass are the corresponding components of this
constant vector.

Proof. By Theorem 3, it suffices to show that there exists a vacuum initial data with the
specified E and P. By the results of the global existence of the Cauchy problem (see
[2, 14, 15]), given a strongly asymptotically flat vacuum initial data set (g, π) close to the
flat data, there exist future and past complete vacuum developments. In particular, we can
boost the slice in spacetime and then rotate the coordinates so that the energy-momentum
vector of (g, π) is parallel to the given vector (E,P). Then, by scaling the data, we obtain
a vacuum initial data with the desired energy-momentum vector (E,P). �
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[14] Klainerman, S. and Nicolò, F., The evolution problem in general relativity, Progress in Mathematical
Physics, 25.

[15] Lindblad, H. and Rodnianski, I., Global existence for the Einstein vacuum equations in wave coor-
dinates, Comm. Math. Phys. 256 (2005), no. 1, 43–110.

[16] Regge, T. and Teitelboim, C., Role of Surface Integrals in the Hamiltonian Formulation of General
Relativity, Ann. Phys. Volume 88 (1974), 286–318.

[17] Zhang, X., Angular momentum and positive mass theorem, Comm. Math. Phys. 206 (1999), 137–155.

Department of Mathematics, Columbia University, New York, NY 10027
E-mail address: lhhuang@math.columbia.edu

Department of Mathematics, Stanford University, Stanford, CA 94305
E-mail address: schoen@math.stanford.edu

Department of Mathematics, Columbia University, New York, NY 10027
E-mail address: mtwang@math.columbia.edu


