
THE EQUALITY CASE IN POSITIVE MASS THEOREMS

LECTURE NOTES FOR EWM-EMS SUMMER SCHOOL: THE CAUCHY
PROBLEM IN GENERAL RELATIVITY

LAN-HSUAN HUANG

This is a mini-course of three lectures given at Institut Mittag-Leffler in June 13-17,

2022. The lecture notes also list many exercises. The exercises marked with (⋆) will be used

elsewhere in the lectures. I appreciate if you let me know for any typos or errors.

1. Introduction

Let n ≥ 3. An initial data set (for the Einstein equation) is an n-dimensional smooth

manifold M equipped with a Riemannian metric g and a symmetric (0, 2)-tensor π called

the momentum tensor. We define the mass density µ and the current density J by

µ =
1

2

(
Rg +

1

n− 1
(trgπ)

2 − |π|2g
)

J = divg π,

where Rg is the scalar curvature of g. The constraint operator defined on initial data sets is

given by

Φ(g, π) = (µ, J).

We say that (M, g, π) satisfies the dominant energy condition (or DEC for short) if

µ ≥ |J |g(1)

everywhere in M . We say (g, π) is vacuum if µ = |J |g = 0.

The special case π ≡ 0 is often called the Riemannian case (or time-symmetric case). The

dominant energy condition becomes Rg ≥ 0.

If (N,g) is a (n+1)-dimensional spacetime. We denote by G = Ricg − 1
2
Rgg the Einstein

tensor. If M is a spacelike hypersurface, as a direct consequence of the Gauss and Codazzi

equations:

G00 =
1

2
(Rg − |k|2 + (trg k)

2) = µ

G0i = (divg k)i −∇i(trg k) = Ji.

The momentum tensor π is related to the second fundamental form (0, 2)-tensor k, via the

equation

πij = kij − (trgk)gij,
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Figure 1. Let (N,g) be a spacetime with cosmological constant Λ. (We only

consider the case Λ = 0 in this mini-course.) (M, g, k) is a hypersurface in

spacetime with the induced Riemannian metric g and second fundamental

form k. The null and timelike vectors form a light cone at the tangent space

of each point in spacetime. The spacetime dominant energy condition requires

the Einstein tensor G ≥ 0 when restricted on vectors in the future light cone.In

particular, it implies the dominant energy on (M, g, k), µ ≥ |J |g, where µ =

G(n,n) and J = G(·,n) and n is the future-pointing unit normal to M .

where the indices on the right have been raised using g. The momentum tensor contains

the same information as k since kij = πij − 1
n−1

(trgπ)gij. A spacetime is said to satisfy the

spacetime dominant energy condition if G(u,w) ≥ 0 for all future causal vectors u,w. Note

that the spacetime DEC along an initial data set is a strong condition that the DEC of the

initial data set (1), which is equivalent to G(n,w) ≥ 0 for the future unit normal n to M

and any future causal w.

Definition 1.1 (Weighted Hölder spaces). Let B ⊂ Rn be the closed unit ball centered at

the origin. For each nonnegative integer k, α ∈ [0, 1], and q ∈ R, we define the weighted

Hölder space Ck,α
−q (Rn \B) as the collection of those f ∈ Ck,α

loc (Rn \B) with

∥f∥Ck,α
−q (Rn\B) :=

∑
|I|≤k

sup
x∈Rn\B

∣∣|x||I|+q(∂If)(x)
∣∣

+
∑
|I|=k

sup
x,y∈Rn\B

0<|x−y|≤|x|/2

|x|α+|I|+q |∂If(x)− ∂If(y)|
|x− y|α

.

Let M be a smooth manifold such that there is a compact subset K ⊂ M and a diffeomor-

phism M \K ∼= Rn \B. We can define the Ck,α
−q norm on M using an atlas of M that consists

of the diffeomorphism M \K ∼= Rn \B and finitely many precompact charts, and then sum



THE EQUALITY CASE IN POSITIVE MASS THEOREMS 3

the Ck,α
−q norm on the non-compact chart and the Ck,α norm on the precompact charts. We

denote by Ck,α
−q (M) the completion of compactly supported smooth functions with respect to

the Ck,α
−q norm. We use the notation f = Ok,α(|x|−q) interchangeably with f ∈ Ck,α

−q (M).

We assume

q ∈
(
n− 2

2
, n− 2

)
, and α ∈ (0, 1).

Let M be a connected smooth manifold without boundary. We say that an initial data set

(M, g, π) is asymptotically flat if there is a compact subset K ⊂ M and a diffeomorphism

M \K ∼= Rn \B such that

(g − gE, π) ∈ C2,α
−q (M)× C1,α

−1−q(M)(2)

and for some q0 > 0

µ, J ∈ C0,α
−n−q0(M)(3)

where gE is a complete smooth Riemannian background metric on M that is equal to the

Euclidean inner product in the coordinate chart M \K ∼= Rn \B. In fact, most parts of the

arguments hold if we relax (3) to

µ, J ∈ L1(M).(4)

We use the stronger fall-off rate (3) in Theorem 3.3 below.

The ADM energy E and the ADM linear momentum P = (P1, . . . , Pn) of an asymptotically

flat initial data set (named after Arnowitt, Deser, and Misner) are defined as

E =
1

2(n− 1)ωn−1

lim
r→∞

∫
|x|=r

n∑
i,j=1

(gij,i − gii,j)
xj

|x|
dσ

Pi =
1

(n− 1)ωn−1

lim
r→∞

∫
|x|=r

n∑
i,j=1

πij
xj

|x|
dσ

where the integrals are computed inM\K ∼= Rn\B, νj = xj/|x|, dσ is the (n−1)-dimensional

Euclidean Hausdorff measure, ωn−1 is the volume of the standard (n − 1)-dimensional unit

sphere, and the commas denote partial differentiation in the coordinate directions. We some-

times write the dependence on (g, π) explicitly as E(g, π) and P (g, π).

Remark 1.2. We remark on the requirement n−2
2

< q < n − 2. Under the assumption

q > n−2
2
, the assumptions (2) and (4) implies that the ADM energy-momentum are well-

defined. The assumption q < n − 2 is imposed because the basic fact in analysis that the

Euclidean Laplacian ∆0 : Ck,α
−q (Rn\B) −→ Ck−2

−2−q(Rn\B), with respect to either the Dirichlet

or Neumann boundary condition, is an isomorphism. (Note that the critical power q = n− 2

corresponds to the fundamental solution |x|2−n of ∆0.)

Exercise 1.3. Under the assumption (2) and (4), the above limits converge and are finite.

Theorem 1.4 (Positive mass inequality. See, e.g. [17, 18, 19, 20, 7]). Let 3 ≤ n ≤ 7 or M be

spin. Let (M, g, k) be an n-dimensional asymptotically flat initial data set that satisfies the

dominant energy condition. Then E ≥ |P |.
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We define the ADM mass

m =
√
E2 − |P |2.

The mini-course will focus on the equality case m = 0, i.e. E = |P | and prove the following

result.

Definition 1.5. Let (M, g, π) be an asymptotically flat initial data set. We say that the

positive mass inequality holds near (g, π) if there is an open ball centered at (g, π) in C2,α
−q (M)×

C1,α
−1−q(M) such that for each asymptotically flat initial data set (ḡ, π̄) in that open ball

satisfying the dominant energy condition, we have Ē ≥ |P̄ |, where (Ē, P̄ ) is the ADM

energy-momentum vector of (ḡ, π̄).

Theorem 1.6 (Equality in positive mass theorem [2, 12]). Let (M, g, π) be an n-dimensional

asymptotically flat initial data set that satisfies the dominant energy condition. Suppose the

positive mass inequality holds near (g, π). Suppose in addition

q > n− 3.(5)

Then E = |P | = 0.

Remark 1.7. (1) If trg k = O(|x|−s) for some s > 2 when n = 3, then (M, g) can be iso-

metrically embedded into Minkowksi spacetime with the induced second fundamental

form k [19, 6].

(2) The assumption can be slightly generalized to be q+α > n− 3. In dimensions n = 3

and 4, the decay rate assumption holds automatically from the condition q > n−2
2
.

In dimensions n ≥ 5, it imposes an extra assumption. It is known that the equality

theorem is false without 2 in dimensions n > 8.

Note that this mini-course will not cover recent results that give different proofs to the

above theorems in dimension n = 3. See e.g. [3, 8, 9]. Neither we discuss about the positive

mass theorems on the asymptotically (locally) hyperbolic manifolds, which are also of current

interests. See, e.g. [15, 11, 10].

2. Rigidity in the Riemannian case

We review the original proof for the Riemannian case in [17] and then give an alterna-

tive proof that can be generalized for initial data sets. In the Riemannian case, we do not

distinguish the ADM mass and energy and use m for the ADM mass.

Theorem 2.1. Let (M, g) be asymptotically flat with Rg ≥ 0. Suppose the positive mass

inequality holds near g. If m(g) = 0, then (M, g) is isometric to (Rn, gE).

2.1. Schoen-Yau’s proof. In this proof, we actually need to assume a stronger assumption

that the positive mass inequality holds for all asymptotically flat metrics γ with Rγ ≥ 0 (not

only those in an open neighborhood of g).

The proof can be done in the following three steps. We will break down the proof into

several exercises.

Step 1: g is scalar flat.
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Lemma 2.2. Suppose Rg ≥ 0 and Rg > 0 somewhere. Then there exists a unique real-valued

function u > 0 with u−1 ∈ C2,α
−q (M) such that ĝ := u

4
n−2 g satisfies Rĝ = 0 and m(ĝ) < m(g).

Proof. By conformal transformation formula,

Rĝ = −u
n+2
n−2

(
4(n− 1)

n− 2
∆gu−Rgu

)
.

Our goal is to solve a unique u with u− 1 ∈ C2,α
−q (M) for

4(n− 1)

n− 2
∆gu−Rgu = 0.(6)

Exercise 2.3. (⋆) Prove that if the solution u exists, then u > 0 everywhere.

We let u = v + 1 and rewrite the equation for v ∈ C2,α
−q (M):

Tv :=
4(n− 1)

n− 2
∆gv −Rgv = Rg.

By Fredholm alternative for T : C2,α
−q (M) −→ C0,α

−2−q(M), the above inhomogeneous equation

is solvable iff T has trivial kernel.

Exercise 2.4. (⋆) Using Rg ≥ 0 to show that T has trivial kernel.

Exercise 2.5. (⋆) For ĝ = u
4

n−2 g, we have

m(ĝ) = m(g)− 2

(n− 2)ωn−1

lim
r→∞

∫
|x|=r

νg(u) dσg

= m(g)− 2

(n− 2)ωn−1

∫
M

∆gu dµg,

where νg is the unit normal pointing to infinity.

By Exercise 2.5 and (6),

m(ĝ) = m(g)− 1

2ωn−1(n− 1)

∫
M

Rgu dµg(7)

< m(g).

□

Step 2: g is Ricci flat.

By Step 1, we can assume Rg = 0. For any compactly supported (0, 2)-tensor h, we consider

the deformation

gs := g + sh.

Exercise 2.6. (⋆) For each |s| small, we can solve a unique us > 0 to Tsus = 0 with

us − 1 ∈ C2,α
−q (M), where

Ts := −4(n− 1)

n− 2
∆gs −Rgs .

Hint: Rgs may not be nonnegative so the proof in Step 1 doesn’t apply. Use that T0 = ∆g :

C2,α
−q (M) −→ C0,α

−2−q(M) is an isomorphism. By inverse function theorem, Ts is also an

isomorphism for |s| small.
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Let ĝs = u
4

n−2
s gs, apply the formula (7) for m(ĝs), and differentiate in s. First compute

Lg(h) :=
d

ds
|s=0Rgs = −∆trg h+ divg divg h− Ricg · h.(8)

Then we obtain

d

dt

∣∣∣∣
s=0

m(ĝs) = − 1

2ωn−1(n− 1)

∫
M

Lg(h) dµg =
1

2ωn−1(n− 1)

∫
M

Ricg · h dµg,

where the term −∆trg h+ divg divg h integrates to zero by divergence theorem. By positive

mass inequality, we have m(ĝs) ≥ 0. Since m(ĝ0) = m(g) = 0, the left hand side above is

nonnegative d
ds

∣∣
s=0

m(ĝt) = 0. By letting h = ηRicg for some cut-off function η ≥ 0, we

conclude that Ricg ≡ 0 everywhere. □

Remark 2.7. The above arguement also suggests us to directly consider h = Ric. It turns

out that it would work as well since gs would have the same mass as g (because Ric decays

faster) and trg Ricg = Rg = 0 and divg divg Ric = 0.

Step 3: g is Euclidean

Lemma 2.8 ([16, Proposition 2]). Let (M, g) be n-dimensional, asymptotically flat manifold.

Suppose g is Ricci flat. Then there is a diffeomorphism Φ : M −→ Rn such that Φ∗g is the

Euclidean metric.

Proof. Let yi be harmonic coordinates with ∆gy
i = 0 for i = 1, . . . , n. Note that |∇yi| =

1 + O(|y|1−n) and ∇|∇yi|2 = O(|y|−n). Using the Ricci flat condition, we have gij(y) =

δij +O(|y|1−n). By Bochner formula,

1

2
∆|∇yi|2 = |∇2yi|2 + g(∇∆y,∇y) + Ricg(∇y,∇y) = |∇2yi|2

for each i, where we use y is harmonic and Ricg = 0. Integrating the identity over large

coordinate balls and applying integration by parts, we get∫
Br

|∇2yi|2 =
∫
∂Br

ν(|∇yi|2) → 0 as r → ∞.

Thus, ∇yi is parallel. Let Φ :M −→ Rn be defined by p 7→ (y1(p), . . . , yn(p)).

Exercise 2.9. Show that Φ∗g is a flat metric.

□

Alternatively, one can also use the Bishop-Gromov volume comparision to prove the pre-

vious lemma.

2.2. Second proof. The first proof use the first variation of the mass functional m(ĝs)

among a family of scalar flat metrics ĝs. The second proof replaces the first two steps above

by a more general variational framework that can be applied broadly to many constraint

minimization problems. The strategy is to first show that a mass minimizing metric g is

static and then invoke static uniqueness, which is inspired by Bartnik’s conjecture that a

Bartnik mass minimizer is static, see [4, 1].
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2.2.1. Static manifolds. A Riemannian manifold (M, g) is static if there is a scalar-valued

function u, called a static potential, satisfying L∗
gu = 0 where L∗

g is the L2-adjoint operator

of R′(h):

L∗
gu := −(∆gu)g +∇2

gu− uRicg.

That is, L∗
g is defined so that∫

M

h · L∗
gu dvolg =

∫
M

uLgh dvolg for all compactly supported h.

(Recall Lgh defined by (8).)

Example. • Euclidean space (Rn, gE) is static, and the static potential is in the linear

space spanned by {1, x1, . . . , xn}.
• The (Riemann) Schwarzschild metric (Rn \Brm , gm, um), where m > 0 and

rm = (2m)
1

n−2 , um =

√
1− 2m

rn−2
, gm = u−2

m dr2 + r2gSn−1 .

Exercise 2.10. If (U, g) is static, then g has constant scalar curvature on each connected

component of U .

Exercise 2.11. (⋆) Let (M, g) be asymptotically flat and static. Suppose the static potential

u → 1 at infinity. Then Ricg ≡ 0, and thus g is isometric to Euclidean metric as Step 3

above.

Exercise 2.12. (⋆) Let (M, g) be asymptotically flat. Suppose u is a static potential defined

on the end M \K. Then either one of the following asymptotics holds for u:

(1) u is identically zero.

(2) u =
∑n

i=1 aix
i +O(|x|max{1−q,0}), where the constants ai are not all zero.

(3) u = a−am|x|2−n+O(|x|max{2−n−q,1−n}) for some nonzero constant a, where m is the

ADM mass of m.

More generally, if L∗
gw ∈ C0,α

−2−q(M), then w satisfies the expansions either (2) or (3), where

the constants a, ai may all be zero, and if a, ai are all zero, w ∈ C2,α
−q (M).

Exercise 2.13. Suppose (U, g) is static and the static potential u > 0. Define the warped

product metric g := −u2dt2+ g on N := R×U . Then g is Ricci flat, i.e. (N,g) is a vacuum

spacetime.

Denote by

M = {γ : γ is a Riemannian metric andγ − gE ∈ C2,α
−q (M)}.

Fix the background asymptotically flat metric g. (We will let g be the metric with m(g) =

0.) Fix an arbitrary scalar-function u with u − 1 ∈ C2,α
−q (M). Define the Regge-Teitelboim

functional F : M −→ R by

F(γ) = 2(n− 1)ωn−1m(γ)−
∫
M

uRγ dvolg.
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Technically speaking, we should write F(g,u) since its definition depends on (g, u). (Note that

the volume measure is for the fixed background metric g, while the more standard definition

is to use dvolγ.)

Exercise 2.14. Verify the formula:

F(γ) =

∫
M

(divg divg γ − d(trg γ))u+ (divg γ − d(trg γ)) · ∇u dvolg

−
∫
M

Rγu dvolg.

Since we only assume γ − gE ∈ C2,α
−q (M) (note that we do not assume Rγ ∈ L1(M) here),

eitherm(γ) or
∫
M
Rγu dvolg may not be finite, but the above formula shows that the functional

F(γ) is well-defined, i.e. it takes values on finite numbers.

Lemma 2.15 (First variation). For any symmetric (0, 2)-tensor h, let gs ∈ M be a differ-

entiable family with g0 = g and d
ds

∣∣
s=0

gs = h. Then

DF|g(h) :=
d

ds

∣∣∣∣
s=0

F(gs) = −
∫
M

L∗
gu · h dvolg.

Remark 2.16. If (M, g) is static with a static potential u→ 1, then g is a critical point of

the functional F defined using (g, u).

Proof. We compute

F(γ) = lim
r→∞

∫
|x|=r

(hij,i − hii,j)
xj
|x|

dσg

−
∫
M

(−∆trg h+ divg divg h− Ricg · h)u dvolg

= −
∫
M

(
∇ trg h · ∇u− divg h(∇u)− uRicg · h

)
dvolg

= −
∫
M

(−∆ug +∇2u− uRicg) · h dvolg.

□

In general, F(γ) and the mass functional m(γ) can have different critical points. However,

if we impose the scalar curvature constraint

Cg = {γ ∈ M : Rγ = Rg}

and let γ ∈ Cg. Then

F(γ) = 2(n− 1)ωn−1m(γ) + F(g)− 2(n− 1)ωn−1m(g).

Therefore, F(γ) and m(γ) takes extreme values at the same metrics.

So far, the computations above hold for a general background metric g. Together with

positive mass inequality, under the assumption that m(g) = 0 and Rg ≥ 0, the functional

F(γ) attains a local minimum at g among the constraint set Cg. This becomes the constraint

minimization, and we will use the method of Lagrange multiplier.
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Recall the Calculus version of the method of Lagrange multiplier when the functional F
is a function f on Rn. Let f : Rn −→ R and R : Rn −→ R be C1. If f has a local extreme

(minimum or maximum) at x0 subject to R(x) = 0. Suppose ∇R|x0 ̸= 0, Then there exists

λ ∈ R such that

∇f |x0 = λ∇R|x0 .

The method of Lagrange multiplier also holds the functional is defined on a infinite-dimensional

Banach space. Note that that the condition∇R|x0 ̸= 0 is replaced by thatDR|x0 is surjective,

which is often the key technical ingredient to obtain.

Theorem 2.17 (The method of Lagrange Multiplier). Let X, Y be Banach spaces, and let

U be an open subset of X. Let F : U −→ R and R : U −→ Y be C1. Suppose F has a local

extreme (minimum or maximum) at x0 ∈ U subject to the constraint R(x) = 0, and suppose

DR|x0 is surjective. Then there is λ ∈ Y ∗ such that DF|x0 = λ(DR|x0), i.e. for all v ∈ X,

DF|x0(v) = λ(DR|x0(v)).

We will let X = M, Y = C0,α
−2−q, F be the functional defined above, and the constraint

R(γ) = Rγ − Rg from the scalar curvature map. One can proof that the linearized scalar

curvature is surjective as the designated Banach space.

Proposition 2.18. Define the scalar curvature map R : M −→ C0,α
−2−q(M) by sending a

metric γ to its scalar curvature Rγ. Then the linearized scalar curvature map Lg : C2,α
−q −→

C0,α
−2−q is surjective.

Sketch of proof. First show that Lg has closed range. This can be done by restricting among

“conformal deformations” h = ug for some scalar-valued function u. Then u 7→ Lg(ug)

becomes an elliptic operator of Fredholm index 0, and in particular has finite codimension.

This shows that Lg has finite codimension and thus the range is closed.

Then, one show that the adjoint operator L∗
g : (C0,α

−2−q(M))∗ −→ (C2,α
−q (M))∗ has trivial

kernel. If L∗
gu = 0, then u has the expansion as stated in Exercise 2.12. Furthermore, the

constants a, ai must be identically zero, for otherwise, u cannot be a bounded functional on

C0,α
−2−q(M) functions by Exercise 2.19. Thus, we conclude u ≡ 0. □

Exercise 2.19. (⋆) Define a function λ(x) = a +
∑

i aix
i for constants a, ai not all zero.

Then there exists a function u ∈ C0,α
−2−q(M) such that∫

M

λu dvolg diverges to ∞.

Theorem 2.20. Let (M, g) be an n-dimensional asymptotically flat manifold with Rg ≥ 0.

Suppose that the positive mass inequality holds for metrics near g. If m(g) = 0, then (M, g)

is static with a static potential u− 1 ∈ C2,α
−q (M).

Proof. Recall the constraint set Cg = {γ ∈ M : Rγ = Rg}. Then for γ ∈ C, we have

F(γ) = 2(n− 1)ωn−1m(γ) + F(g)− 2(n− 1)ωn−1m(g) ≥ F(g).
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That is, g is a local minimum of F among the constraint set Cg. By the Method of La-

grange Multiplier (and we have verified surjectivity in Proposition 2.18), there is a Lagrange

multiplier λ ∈ (C0,α
−2−q(M))∗ such that we have

DF|g(h) = λ(DR|g(h)) for all h ∈ C2,α
−q (M).

By the first variation formula,

−
∫
M

L∗
gu · h dvolg = λ(DR|g(h)).

Thus, it shows that the distribution λ satisfies L∗
g(u+λ) = 0 weakly. By elliptic regularity, u+

λ is locally C2,α. Using that L∗
gλ = −L∗

gu ∈ C0,α
−2−q(M) and Exercise 2.12, we can derive that

λ is asymptotic to a linear combination of {1, x1, . . . , xn} or λ ∈ C2,α(|x|−q). However, since

λ is a bounded linear functional on C0,α
−2−q, it cannot be asymptotic to a linear combination

of {1, x1, . . . , xn} by Exercise 2.19, and thus λ ∈ C2,α
−q . We conclude that u + λ is a static

potential that goes to 1 at infinity. □

To complete the proof of Theorem 2.1, we combine Theorem 2.20 and Exercise 2.11 to

conlcude that (M, g) is isometric to Euclidean space. We remark that one can avoid to work

with distributions by setting the analytic framework in the weighted Sobolev spaceW k,p
−q (M),

provided that the positive mass inequality holds in that weaker regularity.

3. Equality case of the spacetime positive mass theorem

We discuss how the second proof for the Riemannian case can be extended to prove the

equality case for general initial data ests, Theorem 1.6. Let (M, g, k) be an initial data set.

Recall the constraint operator

Φ(g, π) = (µ, J) :=

(
1

2

(
Rg +

1

n− 1
(trg π)

2 − |π|2
)
, divg π

)
.

Let f be a scalar-valued function and X a vector field on M , we say (f,X) is a lapse-shift

pair. The adjoint operator

DΦ|∗(g,π)(f,X)

=

(
1

2
L∗
gf +

(
1

n− 1
(trgπ)πij − πikπ

k
j

)
f

+
1

2

(
giℓgjm(LXπ)

ℓm + (divgX)πij − JiXj − JjXi −Xk;mπ
kmgij − g(X, J)gij

)
,

−1

2
(LXg)ij +

(
1

n− 1
(trgπ)gij − πij

)
f

)
.

(9)

We may omit the subscript (g, π) when the context is clear.

We say that (f,X) is an asymptotically vacuum Killing initial data (KID) if

DΦ∗(f,X) ∈ C0,α
−n−q0 ×C1,α

−1−2q
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for some q0 > 0. Furthermore, we say that (f,X) is asymptotically translational if there

exists a ∈ R and b ∈ Rn such that

(f,X) = (a, b) +O2,α(|x|−q).

Figure 2. A vacuum initial data set (M, g, π) develops a unique vacuum

spacetime metric g. A lapse-shift pair (f,X) solving DΦ∗(f,X) = 0 develops

a vector field Y in the spacetime that satisfies the Killing equation LYg = 0

and f and X are the lapse function and shift vector of Y.

Remark 3.1. By Moncrief [14], if (g, π) is vacuum and (f,X) solves DΦ∗(f,X) = 0, then

Y = fn+X is the Killing vector of the vacuum spacetime development. See Figure 2.

Theorem 3.2 ([12]). Let (M, g, π) be an n-dimensional asymptotically flat initial data set

that satisfies the dominant energy condition and E = |P |. Suppose the positive mass inequal-

ity holds near (g, π). Then (M, g, π) admits an asymptotically vacuum KID (f,X) asymptotic

to (E,−P ).

Theorem 3.3 ([2]). Let (M, g, π) be an n-dimensional asymptotically flat initial data set

whose asymptotically flat fall-off rate satisfies q > n− 3.

If there is an asymptotically vacuum KID (f,X), that is is asymptotic to (a, b) where a ∈ R
and b ∈ Rn are not both zero, then E = |P | = 0.

We will prove Theorem 3.2. Note that the constraint map Φ should play the role of the

scalar curvature map above, but there is a following problem: If (g, π) satisfies the dominant

energy condition, the initial data set (γ, τ) satisfying the constraint Φ(γ, τ) = Φ(g, π) may

not satisfy the dominant energy condition, especially the borderline case that (µ, J) of (g, π)

satisfies µ = |J |g somewhere. Without the DEC, the positive mass inequality may not hold

for (γ, τ) in the constraint set.

We define the modified constraint operator introduced by [5]: Given a background (g, π),

for any initial data set (γ, τ),

Φ(g,π)(γ, τ) := Φ(γ, τ) +

(
0,

1

2
γ · divg π

)
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where (γ · divg π)i = gijγjℓ(divg π)
ℓ. We will omit the subscript and simply denote Φ below.

Exercise 3.4. (⋆) Let (M, g, π) be an initial data set satisfying the dominant energy con-

dition. Suppose (γ, τ) is an initial data set with |γ − g|g < 3 and Φ(γ, τ) = Φ(g, π). Then

(γ, τ) also satisfies the dominant energy condition.

By a similar argument as in Proposition 2.18, we have the following surjectivity for the

modified constraint operator.

Proposition 3.5. Consider the modified constraint operator Φ : M×C1,α
−q (M) −→ C0,α

−2−q(M).

Then the linearized map DΦ|(g,π) : C2,α
−q (M) −→ C0,α

−2−q(M) is surjective.

We are ready to use the framework of constraint minimization to prove Theorem 3.2.

Proof of Theorem 3.2. Fix an arbitrary lapse-shift pair (f0, X0) that is equal to (E,−P ) :=
(E(g, π),−P (g, π)) outside a compact set. Define the modified Regge-Teitelboim functional

H(γ, τ) = (n− 1)ωn−1

(
EE(γ, τ)− P · P (γ, τ)

)
−
∫
M

Φ(γ, τ) · (f0, X0) dµg.

Exercise 3.6. (⋆) The first variation of H at (g, π) is given by

DH|(g,π)(h,w) = −
∫
M

(h,w) · (DΦ|(g,π))∗(f0, X0) dµg.(10)

Define the constraint set C(g,π) =
{
(γ, τ) : Φ(γ, τ) = Φ(g, π)

}
. Then for (γ, τ) ∈ C(g,π), the

functional can be rewritten as

H(γ, τ) = (n− 1)ωn−1

(
EE(γ, τ)− P · P (γ, τ)

)
+H(g, π) ≥ H(g, π)

where we use

EE(γ, τ)− P · P (γ, τ) ≥ EE(γ, τ)− |P ||P (γ, τ)| = E(E(γ, τ)− |P (γ, τ)|) ≥ 0.

Since DΦ : C2,α
−q ×C1,α

−1−q −→ C0,α
−2−q is surjective, we apply the Method of Lagrange Multi-

plier that there exists a Lagrange multiplier (f,X) ∈ (C0,α
−2−q(M))∗ such that

DH|(g,π)(h,w) = (f,X)(DΦ|(g,π)(h,w))

for all (h,w) ∈ C2,α
−q (M)× C1,α

−1−q(M). By (10), (f,X) weakly solves

DΦ
∗
(f,X) = −DΦ

∗
(f0, X0) ∈ C0,α

−2−q(M)× C1,α
−1−q(M).

By elliptic regularity and that (f,X) is a bounded linear functional on C0,α
−q (M), we can obtain

(f,X) ∈ C2,α
−q (M). Thus, we construct an asymptotically vacuum KID (f0 + f,X0 +X) that

is asymptotic to (E,−P ). □

Remark 3.7. By the results in [13], we can furtuer say that (g, π) must satisfy µ = |J |g
and the lapse-shift pair (f,X) satisfies

DΦ
∗
(f,X) = 0

fJ +X|J |g = 0.
(11)
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Further, an initial data set (M, g, π) admits (f,X) that satisfies (⋆) iff (M, g, π) sits in a

null perfect fluid spacetime (N,g) whose Einstein tensor

Gαβ = pgαβ + vαvβ

for some pressure function p and null vector v = ηY (can be 0) for some scalar function η

(where Y = fn+X).

To conclude that E = |P | = 0, we apply Theorem 3.3, which need the extra fall-off rate

assumption q > n− 3. In fact, there are counter examples in dimension n > 8 without that

extra assumption.

Theorem 3.8 ([13, Example 7]). For each n > 8, there exist complete, asymptotically flat

initial data sets (Rn, g, π) with the fall-off rate q < n− 5 that satisfy

• µ = |J |g, E = |P | < 0, not everywhere vacuum.

• There is an asymptotically vacuum KID (f,X) asymptotic to (E,−P ).

Proof. Consider the pp-wave spacetime

g = 2dudxn + S(dxn)2 + (dx1)2 + · · ·+ (dxn−1)2(12)

on R × Rn, where S > 0 is a scalar-valued function independent of u. The Einstein tensor

Gαβ = −1
2
(∆′S)YαYβ, where ∆

′ represents the Euclidean Laplacian in the x′ := (x1, . . . , xn−1)

variables. The spacetime g satisfies the spacetime DEC iff ∆′S ≤ 0 everywhere, and g is

vacuum if ∆′S = 0. The vector Y = ∂
∂u

is null and is convariantly constant. In particular,

Y is Killing.

Exercise 3.9. Verify that g is Lorentzian; namely, its signature is (−,+, . . . ,+).

Example. Consider the Minkowski metric −dt2 + (dy1)2 + · · · + (dyn)2. Let u = yn − t,

xn = 1
2
(yn+ t), and xi = yi for i = 1, . . . , n−1. Then the Minkowski metric can be expressed

as

2dudxn + (dxn)2 + (dx1)2 + · · ·+ (dxn−1)2.

That is S ≡ 1 in (12).

Let (Rn, g, π) be a hypersurface defined by u = constant. The induced metric

g = S(dxn)2 + (dx1)2 + · · ·+ (dxn−1)2.

If we let (f,X) be the lapse-shift pair of Y along the u-slice. Then (f,X) satisfies

(DΦ|(g,π))∗(f,X) = 0

fJ +X|J |g = 0.

We can construct S to satisfy the following properties:

(1) ∆′S ≤ 0 everywhere, strictly negative somewhere, and ∆′S is integrable. (We can

make ∆′S = 0 outside a compact set.)

(2) For any constant C > 0, we can make S ≡ 1 in {|xn| ≥ C}.
(3) limρ→∞

∫
|x′|=ρ

−
∑n−1

a=1
∂S
∂xa

xa

|x′| dµ exists and is positive.
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(4) For each nonnegative integer k and α ∈ (0, 1), we have S − 1 ∈ Ck,α
−q (Rn) with

q = n− 3− (k + α).

Here is a sketch of the construction: Prescribing any F (x′) ≥ 0 with F (x′) = O(|x′|−s for

s > n − 1 and solve ψ(x′) for ∆′ψ = −F where ψ(x′) = A|x′|3−n + O(|x′|2−n). Then let

S(x′, xn) = 1 + ϕ(xn)ψ(x′) where ϕ(xn) is a cut-off function of xn that is identically zero

when |xn| ≥ C.

Item (1) implies that µ, J ∈ L1(M), µ = |J | everywhere and µ = |J | > 0 somewhere.

Item (2) implies that g is exactly Euclidean outside the slab {|xn| ≥ C}.
Item (3) implies that E = |P | > 0:

E = −Pn =
1

2(n− 1)ωn−1

lim
ρ→∞

∫
|x′|=ρ

−
n−1∑
a=1

∂S

∂xa
xa

|x′|
dµ > 0.

(Note that we have P1 = · · · = Pn−1 = 0.)

Letting k = 2, α ∈ (0, 1) in Item (4), we have that (g, π) is AF with the rate q ≤ n−5−α.
We also see that n−2

2
< q, provided n > 8.

□
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