
A TOUR OF THE POSITIVE MASS THEOREM

LAN-HSUAN HUANG

This is a mini-course consisting of four 90-minute lectures given at the Geometrical Aspects

of Mathematical Relativity Masterclass, held from June 16 to 20, 2025, at the University of

Copenhagen. In this lecture series, we review the minimal hypersurface proof of the Riemann-

ian positive mass theorem in dimensions less than eight, and then discuss its generalization

using MOTS for the spacetime positive mass theorem. We also present results concerning

the equality case. These lecture notes include some exercises at the end. I would be grateful

if you could let me know of any typos or errors.

1. Minimal surfaces and scalar curvature

Throughout the notes, we let the dimensions n ≥ 3, manifolds are oriented, and hyper-

surfaces are two-sided. We recall some basic facts about minimal hypersurfaces. Let (M, g)

be a Riemannian manifold and let Σ be a two-sided hypersurface and ν be a unit normal

vector to Σ. For vectors {ea, eb} tangent to Σ, we define the second fundamental form and

the mean curvature by, respectively,

A(ea, eb) = g(∇eaν, eb) and H = gabA(ea, eb) = divΣ ν.

A hypersurface Σ is said to be minimal if H ≡ 0.

Let Ψt : Σ →M be a family of immersions and Σt := Ψt(Σ) and Σ = Σ0. The deformation

vector field X = ∂
∂t

∣∣
t=0

Ψt. We decompose X = φν + X̂, where X̂ is tangent to Σ. Denote

by dσt the volume form of Σt. The first variation of the volume form is given by

d

dt

∣∣∣∣
t=0

dσt = divΣX dσ = (divΣ X̂ + ϕH) dσ.

If we further assume Σ is a minimal hypersurface, then the second variation formula is given

by

d2

dt2

∣∣∣∣
t=0

dσt =
(
|∇Σϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 + divΣG(X̂)

)
dσ,

where G(X̂) = (div X̂)X̂ − ∇X̂X̂ − 2ϕA(X̂, ·) + (∇XX)⊺, where ⊺ denotes the tangential

components; that is, (∇XX)⊺ = ̂(∇XX).

We also note the variation formula for the mean curvature

d

dt

∣∣∣∣
t=0

HΣt = −ϕ∆Σϕ− (Ric(ν, ν) + |A|2)ϕ+ X̂(H).
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Definition 1.1. A minimal hypersurface Σ is said to be stable if∫
Σ

(
|∇Σϕ|2 − (Ric(ν, ν) + |A|2)ϕ2

)
dσ ≥ 0 for all ϕ ∈ C0,1

c (Σ).

Lemma 1.2 (Schoen-Yau’s rearrangement trick). Let Σ be a stable minimal hypersurface.

Then ∫
Σ

(
|∇Σϕ|2 + 1

2
RΣϕ

2
)
dσ ≥

∫
Σ

1
2
(Rg + |A|2)ϕ2 dσ for all ϕ ∈ C0,1

c (Σ).(1)

Proof. Using the Gauss equation Rg − 2Ricg(ν, ν) = RΣ+ |A|2−H2, we rearrange the terms

and get

|A|2 +Ricg(ν, ν) = |A|2 + 1
2
(Rg −RΣ − |A|2) = 1

2
(−RΣ +Rg + |A|2).

□

A quick observation (Simons): if Ricg > 0, then M does not contain any closed stable

minimal hypersurfaces.

On the other hand, there are many manifolds with positive scalar curvature that contain

stable minimal hypersurfaces.

Example 1.3 (Stable minimal hypersurfaces). Let M = Σ × S1 with the product metric

g = h + dθ2. Since M is foliated by totally geodesic slices Σ × {θ}, and thus each slice is

stable minimal hypersurfaces. Also Rg = Rh. Thus, if Rh ≥ 0, then Rg ≥ 0. For explicit

examples, we have T 2 × S1 = S1 × S1 × S1 with a flat metric and S2 × S1 with positive

scalar curvature.

One can ask a sort of reverse question: if Rg ≥ 0, does the induced metric h on a stable

minimal hypersurface Σ satisfy Rh ≥ 0? It is not true in general, but Schoen and Yau

observed that such a stable minimal hypersurface can always admit a metric with nonnegative

scalar curvature! We first consider the three-dimensional case.

Theorem 1.4. Let (M, g) be a closed 3-dimensional manifold. Let Σ be a closed stable

minimal surface. Then

(1) If Rg ≥ 0, then Σ is diffeomorphic a sphere or a torus.

(2) If Rg > 0, then Σ is diffeomorphic a sphere.

Remark 1.5. If Σ is diffeomorphic to a torus, then one can further characterize its intrinsic

geometry.

Proof. Letting ϕ = 1 in the stability inequality (1) gives∫
Σ

KΣ dσ ≥ 1
2

∫
Σ

Rg dσ.

By Gauss-Bonnet theorem for closed surfaces,
∫
Σ
KΣ dσ = 2πχ(M) = 2π(2− 2g). □

Before we proceed to higher dimensional case, we give a general discussion about the first

eigenvalue.
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Definition 1.6. Let Ω be a compact Riemannian manifold possibly with boundary. Consider

the linear differential equation on Ω, for some vector field Y and scalar function q:

Lu := −∆u+ ⟨Y,∇u⟩+ qu.

We say λ1 ∈ R is the first (Dirichlet) eigenvalue of L if there exists ϕ > 0 on IntΩ and

ϕ|∂Ω = 0 if ∂Ω ̸= ∅ such that

Lϕ = λ1ϕ.

Lemma 1.7. Consider a Schrödinger operator Lu = −∆u + qu. Then the first eigenvalue

λ1 can be computed using the Rayleigh quotient

λ1(L,Ω) = inf
u̸=0

{∫
Ω

(|∇u|2 + qu2) dµ : ∥u∥L2 = 1, u|∂Ω = 0

}
.

Corollary 1.8. We compare the first eigenvalues of different operators.

(1) If q ≥ q̃, then λ1(−∆+ q) ≥ λ1(−∆+ q̃).

(2) Let 0 < c ≤ 1 be a constant. Then λ1(−∆+ cq) ≥ cλ1(−∆+ q).

Proof. The first one is obvious. For the second one, we compute∫
Ω

|∇u|2 + cqu2 = c

∫
Ω

(|∇u|2 + qu2) +

∫
Ω

(1− c)|∇u|2 ≥ c

∫
Ω

(|∇u|2 + qu2).

□

We will mainly consider two types of Schrödinger operators: the stability operator and the

conformal Laplacian:

Example 1.9. • Denote by SΣ = −∆Σ−(Ric(ν, ν)+|A|2) the stability operator. Then,

we say that Σ is a stable minimal hypersurface in (Mn, g) if

λ1(SΣ,Ω) ≥ 0 for all bounded subsets Ω ⊂ Σ.

• Let n ≥ 3 and (Mn, g) be a Riemannian manifold. Consider ĝ = u
4

n−2 g, that is ĝ ∈ [g],

the (pointwise) conformal class of g. Then

Rĝu
n+2
n−2 = −4(n−1)

n−2
∆gu+Rgu.(2)

Define the conformal Laplacian

Lgu = −∆gu+ c(n)Rgu where c(n) = n−2
4(n−1)

.

Thus,

• λ1(Lg) > 0 iff ḡ ∈ [g] with positive scalar curvature. (Yamabe positive)

• λ1(Lg) = 0 iff ḡ ∈ [g] with zero scalar curvature. (Yamabe zero)

• λ1(Lg) < 0 iff ḡ ∈ [g] with negative scalar curvature. (Yamabe negative)

Theorem 1.10. Let n ≥ 3 and (M, g) be an n-dimensional Riemannian manifold. Let Σ be

a closed stable minimal hypersurface in M . Then

(1) If Rg ≥ 0, then Σ is Yamabe nonnegative.

(2) If Rg > 0, then Σ is Yamabe positive.
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Proof. Note that

c(n− 1) = n−3
4(n−2)

< 1
2
.

Therefore, for some 0 < α < 1

λ1(−∆Σ + c(n− 1)RΣ) ≥ αλ1(−∆Σ + 1
2
RΣ) ≥ αλ1(SΣ).

□

Corollary 1.11 (Geroch conjecture, resolved by Schoen-Yau). Let 3 ≤ n ≤ 7. Then T n

doesn’t admit a metric of positive scalar curvature.

Sketch. Suppose, to get a contradiction, T n admits a metric of positive scalar curvature.

When n = 3, by minimizing in the homology class of T 2 × {0}, there is a stable minimal

surface, and it must be diffeomorphic to a sphere. Contradiction. For n > 3, suppose there

is a stable minimal hypersurface Σn−1 homologous to T n−1 × {0}, then Σn−1 is Yamabe

positive, and thus admits a metric of positive scalar curvature, which contradicts the result

in (n− 1)-dimension. □

2. Riemannian positive mass theorem

2.1. Asymptotically flat manifolds and the ADM mass.

Example 2.1 (The family of n-dimensional (Riemannian) Schwarzschild metrics). For each

m ∈ R, define the rotationally symmetric Riemannian gm on Rn or Rn \ B for some closed

ball B as

gm =

(
1 +

m

2|x|n−2

) 4
n−2

gE.

Using that u := 1 + m
2|x|n−2 is a Euclidean harmonic function, by conformal transformation

formula, Rgm = 0. The metric gm is asymptotically flat in the sense that gm → gE when

|x| → ∞.

• When m < 0, and the metric has a singularity at r := |x| =
(
−m

2

) 1
n−2 , e.g. the Ricci

curvature diverges as |x| ↘
(
−m

2

) 1
n−2 .

• When m = 0, this is just the Euclidean metric.

• When m > 0, the metric is defined on Rn \ {0} and the surface Σ0 := {r =
(
m
2

) 1
n−2}

is a totally geodesic surface, and in fact an area-minimizing surface in its homology

class. See Problem 8.

In order to do analysis on unbounded manifold, we will use the following function spaces.

Definition 2.2 (Weighted Hölder spaces). Let B1 ⊂ Rn be the closed unit ball centered

at the origin. For each nonnegative integer k, α ∈ [0, 1], and q ∈ R, we define the weighted
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Hölder space Ck,α
−q (Rn \B1) as the collection of those f ∈ Ck,α

loc (Rn \B1) with

∥f∥Ck,α
−q (Rn\B1)

:=
∑
j≤k

sup
x∈Rn\B1

∣∣|x|j+q(∂jf)(x)
∣∣

+ sup
x,y∈Rn\B1

0<|x−y|≤|x|/2

|x|α+k+q |∂kf(x)− ∂kf(y)|
|x− y|α

< +∞.

We will also use the notation f ∈ Ok,α(|x|−q) for f ∈ Ck,α
−q when emphasizing the fall-off rate

q.

Definition 2.3. Let q > n−2
2
. A Riemannian n-manifold (M, g) is called asymptotically flat1

if there is a compact subset K and a diffeomorphism ψ :M \K → Rn \B1 such that

gij − δij ∈ C2,α
−q

where gij := (ψ∗g)(∂i, ∂j) and {∂1, · · · , ∂n} is a Cartesian coordinate chart. In addition, we

assume Rg ∈ L1(M).

We denote h = g − gE. The Taylor expansion of the scalar curvature Rg in h is given by

Rg = RgE +DRgE(h) +Q(∂g)

= RgE + (−∆trh+ div div h− h · RicgE) +Q(∂g)

= −∆tr g + div div g +Q(∂g),

where Q(∂g) is quadratic in ∂g. Integrate the leading order terms over M and apply the

divergence theorem:∫
M\B1

(Rg −Q(∂g)) dv =

∫
M\B1

(−∆tr g + div div g) dv

= lim
r→∞

∫
Sr

(gij,i − gii,j)
xj
r
dσ −

∫
S1

(gij,i − gii,j)
xj
r
dσ.

(Recall that we sum over the repeated indices.) The ADM mass is defined to be the boundary

term at infinity in the previous identity

m(g) =
1

2(n− 1)ωn−1

lim
r→∞

∫
Sr

(gij,i − gii,j)
xj
r
dσ.

The normalizing constant in front of the integral is chosen so that the Schwarzschild metric

gm has massm. We note that the limit exists and is “well-defined” if q > n−2
2
, whilem(g) = 0

if q > n− 2.

Lemma 2.4 (Continuity of the ADM mass). Given ϵ > 0, there exists δ > 0 such that if

∥ḡ − g∥C2
−q(M) < δ and ∥Rḡ −Rg∥L1(M) < δ, then

|m(ḡ)−m(g)| < ϵ.

1Throughout the course, we assume M is complete without boundary and has one asymptotically flat

end, but many results hold in greater generality.
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Proof. By reversing the computations that lead to the definition of m(g), we get

2(n− 1)ωn−1m(g) =

∫
M\B1

(Rg −Q(∂g)) dv +

∫
S1

(gij,i − gii,j)
xj
r
dσ.

Therefore,

2(n− 1)ωn−1(m(ḡ)−m(g)) =

∫
M\B1

(Rḡ −Rg) + (Q(∂ḡ)−Q(∂g)) dv

+

∫
S1

((ḡ − g)ij,i − (ḡ − g)ii,j)
xj
r
dσ.

Using the assumptions that ∥ḡ − g∥C2
−q
< δ and ∥Rḡ − Rg∥L1(M) < δ, the right hand side is

less than Cδ. Choosing δ small, the lemma follows. □

Theorem 2.5 (Riemannian positive mass theorem). Let 3 ≤ n ≤ 7 and (M, g) be an n-

dimensional asymptotically flat manifold. Suppose Rg ≥ 0. Then the ADM mass m(g) ≥ 0

with equality if and only if (M, g) is isometric to (Rn, gE).

We will give Schoen-Yau’s minimal surface proof to the positivity and leave the rigidity

to Problems (9), (10), (11). We first give an outline.

Step 1. Deform g to g̃ so that Rg̃ > 0 in M : By Fischer-Marsden, the scalar curvature map

R : g ∈ gE + C2,α
−q (M) → Rg ∈ C0,α

−2−q(M) is locally surjective. For f > 0 and ∥f∥C0,α
−2−q

sufficiently small, there exists g̃ near g such that Rg̃ = Rg + f > 0.

Step 2. By a cut-off procedure, one can simplify g to have harmonic asymptotics:

g = u
4

n−2 gE outside a compact set

and hence u = 1 + m
2
|x|2−n +O(|x|1−n).

Now, we assume, to get a contradiction, m(g) < 0. Combining Step 1 and Step 2,

we may assume g satisfies Rg > 0 and g has harmonic asymptotics.

Step 3. For n = 3, produce a complete, asymptotically planar, 2-dimensional stable minimal

surface. Show contradiction to Gauss-Bonnet theorem.

Step 4. Height picking: For 3 < n ≤ 7, produce a complete, asymptotically planar, (n − 1)-

dimensional minimal hypersurface that is stable and also “vertical stable”. Then

obtain (n− 1)-dimensional asymptotically flat manifold with Rg̃ ≥ 0 and m(g̃) < 0.

Contradicting the positive mass theorem in (n− 1) dimensions.

2.2. Unbounded minimal hypersurfaces. To prepare for Schoen-Yau’s proof to the pos-

itivity in Theorem 2.5, we discuss some fundamental facts about minimal hypersurfaces.

We begin with some basic examples of complete, unbounded minimal surfaces in R3: the

plane and the family of catenoids {(x1, x2, x3) : σ = c cosh
(
x3

c

)
} for each c ̸= 0. See Figure 1

where σ =
√
x21 + x22. Note x3

∼= log σ.

Let U ⊂ Rn−1 be an open subset. Consider f : U → R. Let Σ = Graph[f ] = {(x′, xn) :
xn = f(x′)} be the graph of f . The vectors ei = ∂i+(∂if)∂n for i = 1, . . . , n−1 are tangential

to Σ. The upward unit normal is

ν =
(−∇f, 1)√
1 + |∇f |2

.
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Figure 1. Catenoids with different values of c (c = 1 in the left figure and

c = 1, 2, 4 in the right figure). The “upper half” portion of a catenoid can

be expressed as the graph x3 = u(x1, x2) = c log

(
σ
c
+
√

σ2

a2
− 1

)
and the

graphing function u(x1, x2) has growth c log
(
2σ
c

)
for σ large.

The second fundamental form is

A(ei, ej) = −gRn(∇eiej, ν) = −
∂2ijf√

1 + |∇f |2

and the mean curvature equation is

H = divΣ ν = − divRn

(
∇f√

1 + |∇f |2

)
= −

(
δij −

fifj
1 + |∇f |2

)
∂2ijf√

1 + |∇f |2
.

If Σ is a minimal surface, then f satisfies the minimal surface equation:(
δij −

fifj
1 + |∇f |2

)
∂2ijf√

1 + |∇f |2
= 0.

Lemma 2.6 (Maximum principle). Let U ⊂ R2 be a connected open subset. Let u, v : U → R
satisfy the minimal surface equation. If u ≤ v everywhere and u(x) = v(x) at some x. Then

u ≡ v everywhere.

Next, let (Ω, g) be a n-dimensional manifold with strictly mean convex boundary; that is,

if we let ν be the outward unit normal to ∂Ω,

H∂Ω = div∂Ω ν > 0.

Let Γ be a smooth (n − 2)-dimensional submanifold in ∂Ω. The Plateau solution says that

there exists an immersed area-minimizing hypersurface Σ whose boundary is Γ. Assume

existence (here we require 3 ≤ n ≤ 7; otherwise, existence holds only in a weaker sense, for
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example, as integral currents). We discuss how the mean convexity assumption is used to

prevent Σ from touching ∂Ω in order to get a smooth Σ. Let Ωt = {x ∈ Ω : d(x, ∂Ω) > t}
and Σt = ∂Ωt. Then for t > 0 small, ∂Ωt gives a foliation of strictly mean convex surfaces in

a collar neighborhood of ∂Ω. We parallely extend the outward unit normal ν of the boundary

∂Ω into the collar neighborhood. Suppose, to get a contradiction, Σ is an area minimizing

surface with boundary Γ such that Σ = ∂U ∩ Ω, i.e., Σ is a boundary of some subset of Ω.

Note that

divg ν = divΣt ν = HΣt > 0.

We integrate div ν in U ∩ (Ω \ Ωt) and apply divergence theorem:

0 <

∫
U∩(Ω\Ωt)

div ν =

∫
Σ∩(Ω\Ωt)

n⃗ · ν⃗ dσ −
∫
∂Ωt∩U

ν⃗ · ν dσ

≤ Area(Σ ∩ (Ω \ Ωt))− Area(∂Ωt ∩ U).

Thus, if we replace the portion of Σ that enters the tubular neighborhood, i.e. Σ ∩ (Ω \Ωt),

by the portion of the mean convex surface ∂Ωt in U , we get a surface with strictly less area.

It contradicts that Σ is area minimizing. See Figure 2.

Figure 2. The mean convex boundary acts as a ”barrier” that prevents the

entry of area-minimizing surfaces.

2.3. Complete unbounded minimal hypersurfaces. We assume (M, g) is asymptoti-

cally flat, Rg > 0 everywhere, m(g) < 0, and

g = u
4

n−2 gE and u = 1 + m
2
|x|2−n +O(|x|1−n).(3)
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We will denote r = |x| and use them interchangeable. Recall that we denote the coordinate

ball Br =M \ {|x| > r}.
Consider coordinate hyperplane Ph := {xn = h} where |h| ≫ 1. Let ν be the upward-

pointing unit normal.

Lemma 2.7. For |h| ≫ 1, the mean curvature of the coordinate plane Ph with respect to ν

is

HPh
(x) = −(n− 1)mh|x|−n +O(|x|−n).

Proof. We have ν = u−
2

n−2 ∂
∂xn

. By the conformal transformation formula, we have

HPh
= u−

2
n−2 (HgE +

2(n−1)
n−2

u−1 ∂
∂xn

u)

= 2(n−1)
n−2

2−n
2
mxn|x|−n +O(|x|−n).

□

Therefore, for h ≫ 1, {xn = h} has strictly positive mean curvature with respect to ν

because

HPh
(x) ≥ −mh

|x|n
− C

|x|n
=

−mh− C

|x|n
> 0

for h sufficiently large. Similarly, {xn = −h} has a strictly positive mean curvature with

respect to −ν.

Corollary 2.8. Fix Λ ≥ 1. For each σ ≫ 1, we denote the coordinate cylinder Cσ =

{(x′, xn) : |x′| ≤ σ, |xn| ≤ Λ}. Then Cσ is mean convex.

We let Σσ be a plateau solution whose boundary is Γσ := ∂Cσ ∩ {xn = 0}. See Figure 3.

Theorem 2.9 (Compactness Theorem). Let (M, g) be a 3-dimensional Riemannian mani-

fold. Let U ⊂M be open and K ⊂M be compact. Suppose Σk is a sequence of stable minimal

surfaces in U with Area(Σk∩K) ≤ V0. Then there exists a subsequence converging to a stable

minimal surface Σ in K.

sketch. • Curvature estimate: from stability to imply |A|2 is small.

• small |A|2 implies locally graphical with uniform control on |∇u|, |∇2u|
• Arzela-Ascoli implies convergence of u in C1,α, and thus u is smooth because it

satisfies the minimal surface equation.

□

Using compactness, we explain how to obtain a complete stable minimal surface Σ from

Σσ. For each fix r0, the cylinder Cr0 is compact and for any k > r0, the sequence Σk has

uniform area bound by comparing the area with ∂Cr0 . By compactness, a subsequence, still

denoted by Σk, converges to a minimal hypersurface in Cr0 . From that subsequence, we

repeat the argument in a larger compact set C2r0 to extract a further subsequence. Then by

choosing a diagonal sequence, we obtain a subsequence that converges to a complete stable

minimal hypersurface Σ.
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Figure 3. Under the assumption m < 0, a Plateau solution Σσ exists in a

large cylinder with the fixed height.

Proposition 2.10. The complete minimal surface Σn−1 constructed above is graphical out-

side a compact set, given by

Graph[u] = {(x′, xn) : xn = f(x′)}

where f(x′) has the expansion

f(x′) =

{
c0 +O(|x′|−1) n = 3

c0 + c1|x′|3−n +O(|x′|2−n) n > 3
.

Consequently, the induced metric g̃ on Σ is given by

ĝij = gij + fifj = gij +O(|x′|4−2n)

and (Σ, g̃) is (n − 1)-dimensional asymptotically flat, with respect to the chart {x′}, and

m(g̃) = 0.

Proof. By the Allard regularity theorem and that the second fundamental form is small, we

get Σ is the graph of f where f is bounded, and |∂f | ≤ C|x′|−1. By conformal transformation

formula,

0 = HΣ = u−
2

n−2 (H0 +
2(n−1)
n−2

ν0 log f) = 0.

Therefore, H0 +
2(n−1)
n−2

ν0 log f = 0, that is(
δij −

fifj
1 + |∇f |2

)
fij√

1 + |∇f |2
+

2(n− 1)

n− 2
ν0 log(f) = 0.

Then the expansion of f follows harmonic asymptotics.

□
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2.4. Proof for n = 3. To finish the argument for n = 3, we have stability, for all ϕ ∈ C0,1
c (Σ)∫

Σ

|∇Σϕ|2 + 1
2
RΣϕ

2 dσ ≥ 1

2

∫
Σ

(Rg + |A|2)ϕ2 dσ > 0.(4)

Choose fk to be a sequence of the log cut-off functions with
∫
Σ
|∇fk|2 → 1 and fk → 1 to

get

0 ≥ lim
k→∞

1

2

∫
Σ

(Rg −RΣ + |A|2)f 2
k dσ =

1

2

∫
Σ

(Rg −RΣ + |A|2) dσ.

We get ∫
Σ

KΣ dσ > 0.

By the Gauss-Bonnet theorem,

0 <

∫
Σ

KΣ dσ = lim
a→∞

∫
Σ∩Ca

KΣ dσ = lim
a→∞

(
2πχ(Σ ∩ Ca)−

∫
γa

kg

)
(5)

Note that lima→∞ χ(Σ ∩ Ca) = χ(Σ) ≤ 1, and since Σ is asymptotically planar,∫
∂Σa

kg → 2π.

Thus the limit of the right hand side in (5) is ≤ 0. It gives a contradiction.

2.5. Proof n > 3: the height picking method. We need the following general fact for

Schrödinger operator, as a special case of more general results of Fischer-Colbrie and Schoen.

Lemma 2.11. Let M be asymptotically flat. Suppose λ1(−∆ + q,Ω) > 0 for all bounded

subset Ω ⊂M . Then there exists u > 0 and u− 1 ∈ C2,α
−q (M) solving

−∆u+ qu = 0.

Proof. Let {Ωj} be a compact exhaustion of M . By Fredholm alternative, there exists

−∆vj + qvj = −q on Ωj

vj|∂Ωj
= 0.

By Schauder estimate, vj → v in C2,α
−q (M) solving −∆v + qv = −q. Then u = v + 1 solves

−∆u + qu = 0. To see that u > 0, suppose, on the contrary, that Ω = {x ∈ M : u(x) < 0}
is bounded, which contradicts that λ1 > 0 on Ω. □

We apply this to the complete stable minimal hypersurface Σ constructed above. As in

the proof of Theorem 1.10, for the conformal Laplacian on Σ,

λ1(−∆Σ + c(n− 1)RΣ,Ω) ≥ αλ1(−∆Σ + 1
2
RΣ,Ω) > 0

for all bounded subsets Ω ⊂ Σ. Then the previous lemma (and harmonic expansion) implies

that there exists a conformal factor

−∆Σu+ c(n− 1)RΣu = 0

u = 1 + a|x′|3−n +O(|x′|2−n).
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and g̃ = u
4

n−3 ĝ is scalar flat. Furthermore, (Σ, g̃) is asymptotically flat with the ADM mass

m(g̃) = 2a.

The conformal equation implies

−(n− 3)ωn−2a =

∫
∂Σ

u⟨∇u, η⟩ =
∫
Σ

|∇u|2 + c(n− 1)RΣu
2.

If Σ is “vertically stable” in the sense that
∫
Σ
|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 ≥ 0 for all

u − 1 ∈ C2,α
3−n(M), then a < 0. Then we obtain an (n − 1)-dimensional asymptotically flat

manifolds with zero scalar curvature and negative mass. A contradiction.

We go back to the earlier argument of choosing Σρ. This time, we consider all Σρ,h that each

is a Plateau solution to the boundary {|x′| = σ, xn = h}. Let Σσ to be the one minimizing

the area among Σρ,h. Let Σ is a subsequential limit as σ → ∞.

Let X be a vector field on M that is identically equal to ∂
∂xn

outside a compact set of M .

By the first and second variation formulas of the area, we have

0 =
d

dh

∣∣∣∣
h=h0

Vol(Σσ,h)

0 ≤ d2

dh2

∣∣∣∣
h=h0

Vol(Σσ,h) =

∫
Σσ,h0

|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 +

∫
∂Σσ,h0

⟨G(X̂), η⟩

where ϕ = ⟨X, νσ⟩. Letting σ → ∞, the above inequality converges to

0 ≤
∫
Σ

|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 +

∫
∂Σ

⟨G(X̂), η⟩

where the boundary term limits to zero. Using that Σ is asymptotically to a hyperplane, we

have ϕ− 1 = O(|x′|3−n). This implies the vertical stability, for all ϕ− 1 ∈ C0,1
3−n,∫

Σ

|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 ≥ 0.

It completes the proof.

3. Spacetime positive mass theorem

We say that (N,g) is an (n + 1)-dimensional spacetime if g is a Lorentzian metric. For

any tangent vector v on N, we call v timelike if g(v, v) < 0, null (or lightlike) if g(v, v) = 0,

and spacelike if g(v, v) > 0; see Figure 4. Let (M, g) be a spacelike hypersurface in (N,g),

meaning the induced metric g on M is Riemannian. Let n denote the future-directed unit

normal to M , and define the second fundamental form k by

k(ei, ej) = g(∇ein, ej),

where ∇ is the Levi-Civita connection of g, and ei, ej are tangent vectors on M . We say

(M, g, k) is an initial data set (for the Einstein equation).

The Einstein equation states

Ricg − 1
2
Rgg + Λg = T
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Figure 4. At the tangent space of each point, one can define the future and

past light cones. Two future null vectors n+e1 and n−e1 are given. The yellow
curve is null as its tangent vector is null at each point. The submanifold at

the bottom-right is spacelike because its tangent vectors are spacelike at each

point.

where Λ is the cosmological constant, which we assume to be identically zero throughout, and

T represents the matter field. As a direct consequence of the Gauss and Codazzi equations:

µ := T (n,n) =
1

2
(Rg − |k|2 + (trg k)

2)

Ji := T (n, ei) = (divg k)i −∇i(trg k) for ei tangent to M

where µ is the mass density and J is the current (or momentum) density. We say that

(M, g, k) satisfies the dominant energy condition (or DEC for short) if

µ ≥ |J |g(6)

everywhere in M . Equivalently, the DEC says T (n,v) ≥ 0 for all future timelike or null

vector v. (Physically, this means that energy flow does not propagate faster than light.) An

initial data set is called vacuum if µ = |J |g = 0. The important special case k ≡ 0 is called

the Riemannian case (or time-symmetric case). In this case, the dominant energy condition

becomes Rg ≥ 0, and Rg ≡ 0 is the vacuum case.

Example 3.1 (The family of 3-dimensional Schwarzschild spacetime). Let m > 0. Consider

N = R× (R3 \Bm/2) with the metric

gm = −
(
1− m

2r

1 + m
2r

)2

dt2 +
(
1 +

m

2r

)4
(dr2 + r2dΩ2)

where dΩ2 is the round metric on unit sphere. The metric is vacuum, i.e. Ricgm = 0. Note that

the Riemannian Schwarzschild metrics given in Example 2.1 are time-slices {t = constant}
of gm. Also note that each time-slice is totally geodesic, i.e. the induced second fundamental

form k ≡ 0.

We say (M, g, k) is an asymptotically flat initial data set if (M, g) is an asymptotically

flat manifold and k ∈ C1,α
−1−q(M), and µ, J ∈ L1(M). We can define the ADM energy E and
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Figure 5. Let (N,g) be a spacetime. An initial data set (M, g, k) is a hy-

persurface in spacetime with the induced Riemannian metric g and second

fundamental form k. The null and timelike vectors form a light cone at the

tangent space of each point in spacetime. The dominant energy condition on

(M, g, k) says T (n,v) ≥ 0 for all future causal vector v, where n is the fu-

ture unit normal to M . The spacetime dominant energy condition asserts that

T (v,w) ≥ 0 for all future causal v,w

linear momentum P by

E = m(g) =
1

2(n− 1)ωn−1

lim
r→∞

∫
|x|=r

(gij,i − gii,j)
xj
r
dσ

P =
1

(n− 1)ωn−1

∫
r→∞

∫
|x|=r

(kij − (tr k)δij)
xj

r
dσ.

If E ≥ |P |, then we can define the ADM mass m =
√
E2 − |P |2.

3.1. Basic facts about MOTS and stability. Let Σ be a (n−1)-dimensional hypersurface

in an (n + 1)-dimensional spacetime (N,g), where Σ is spacelike, i.e. the induced metric is

Riemannian. There exist two future null directions on Σ. Assuming ν represents an outward

spacelike unit vector orthogonal to Σ, and n denotes a future timelike unit vector that is

orthogonal to both Σ and ν, the two future directions can be expressed as ℓ+ = n + ν and

ℓ− = n− ν.

Consider a family of immersions Ψt : Σ → N whose deformation vector field ∂
∂t

∣∣
t=0

Ψt = ℓ+.

Denote Σt = Φt(Σ). Analogous to the Riemannian case, the first variation formula of the

volume form dσt of Σt is given by

d

dt

∣∣∣∣
t=0

dσt = θdσt.

The function θ is called outward null expansion. It relies on the specific choice of ℓ, and since

there is no natural scaling for ℓ, only the sign of θ holds physical or geometric significance

for Σ. Based on this observation, we can categorize Σ as an outer trapped surface if θ < 0, an
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outer untrapped surface if θ > 0, or a marginally outer trapped surface (or MOTS for short)

if θ = 0.

Now suppose that Σ resides within a spacelike slice (M, g, k). If we choose a outward

normal ν to Σ in M , we can obtain an outward null normal ℓ on Σ by taking ℓ+ = n+ ν as

above, where n is the future timelike unit normal to M . Thus, the null outer expansion θ is

related to the mean curvature of Σ in M by

θ = H + trΣ k.

In the special case where M is totally geodesic in N, θ = H, and hence a MOTS is a

generalization of minimal hypersurfaces.

Lemma 3.2. Assume Σ is a MOTS in an initial data set (M, g, k). The first variation of

the null expansion, among variations X = ϕν, is given by

SΣ := d
dt

∣∣
t=0

θΣt = −∆Σϕ+ 2⟨W,∇ϕ⟩+ (divΣW − |W |2 +Q)ϕ

where

Q = 1
2
RΣ − µ− J(ν)− 1

2
|k + A|2

W (ea) = k(ν, ea) for all vectors ea tangent to Σ.

Definition 3.3. A MOTS Σ in (M, g, k) is stable if λ1(SΣ,Ω) ≥ 0 for all bounded subset

Ω ⊂ Σ.

Theorem 3.4 (Galloway-Schoen). Suppose Σ in an initial data set (M, g, k) is a stable

MOTS. Then ∫
Σ

|∇v|2 +Qv2 ≥ 0 for all v ∈ C0,1
c (Σ).

Consequently, if (M, g, k) satisfies the dominant energy condition and Σ is closed, then Σ is

Yamabe nonnegative.

Proof. Let Ω ⊂ Σ be a bounded subset and ϕ > 0 on IntΩ solving

−∆Σϕ+ 2⟨W,∇ϕ⟩+ (divΣW − |W |2 +Q)ϕ = λ1ϕ.

Then

divΣ(W −∇Σ log ϕ)− |W −∇Σ log ϕ|2 +Q = λ1 ≥ 0.

Multiplying v2 and integrating by parts give

0 ≤
∫
Σ

2v∇v · (W −∇Σ log ϕ)− |W −∇Σϕ|2v2 +Qv2 +

∫
∂Σ

v2⟨W −∇Σ log ϕ, η⟩

≤
∫
Σ

|∇Σv|2 +Qv2 +

∫
∂Σ

v2⟨W −∇Σ log ϕ, η⟩.(7)

Letting v ≡ 0 on ∂Σ gives the desired inequality. □
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3.2. Proof of positivity E ≥ |P |. We present the proof using MOTS by Eichmari-H.-Lee-

Schoen. Similar to the Riemannian case, there are four main steps.

⋆ Step 1. Deform g to g̃ so that g̃ has strict dominant energy condition.

Step 2. By a cut-off procedure, one can simplify g to have harmonic asymptotics, outside a

compact set,

gij = u
4

n−2 δij

kij = Xi;j +Xj;i − 1
n−1

(divgE X)δij

and hence

u = 1 + 1
2
E|x|2−n +O(|x|1−n)

Xi = −n−1
n−2

Pi|x|2−n +O(|x|1−n).

Now, we assume, to get a contradiction, E < |P |. Combining Step 1 and Step 2, we

may assume (g, k) satisfies µ > |J |, (g, k) has harmonic asymptotics, and E < |P |.
Step 3. For n = 3, produce a complete, asymptotically planar, 2-dimensional stable MOTS.

Show contradiction to Gauss-Bonnet theorem.

Step 4. Height picking: For 3 < n ≤ 7, produce a complete, asymptotically planar, (n − 1)-

dimensional MOTS hypersurface that is stable and also vertical stable. Then obtain

(n − 1)-dimensional asymptotically flat manifold with Rg̃ ≥ 0 and m(g̃) < 0. Con-

tracting the positive mass theorem in (n− 1) dimensions.

Step 1 and Step 4 require novel ideas, which we now describe.

3.3. Step 1. If (M, g, k) is vacuum, then it follows from the fact that the constraint map

Φ is locally surjective as follows: For f > 0 sufficiently small, there exists (ĝ, k̂) solving

Φ(ĝ, k̂) = Φ(g, k) + (f, 0). Thus,

µ̂− |Ĵ |ĝ = µ̄ = f > 0.

The above argument doesn’t work if J ̸= 0. Consider

gt = g + th+O(t2)

kt = g + tw +O(t2)

µt = µ+ tµ′ +O(t2)

Jt = J + tJ ′ +O(t2).

Then

|Jt|2gt = (g + th)ij(J + tJ ′)i(J + tJ ′)j +O(t2)

= |J |2g + t(hijJ
iJ j + 2gijJ

i(J ′)j) +O(t2).

We can prescribe µ′ and J ′, which determine h and w. However, even if we choose µ′ > 0

and J ′ = 0, there remains an uncontrollable term hijJ
jJ j, which is of the same order as µ′.

The idea is to make hijJ
j + 2gij(J

′)j = 0.
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Definition 3.5 (Corvino-H.). Fix a background initial data set (g, k), define the modified

constraint operator

Φ(g,k)(γ, τ) = Φ(γ, τ) + (0, 1
2
γ · J(g, k)).

Then the linearization

DΦ = DΦ + (0, 1
2
h · J).

Lemma 3.6. Φ(g,k) is locally surjective. Furthermore, if Φ(g,k)(ĝ, k̂) = (f, 0), then µ̂−|Ĵ |ĝ ≥
µ− |J |g + f .

3.3.1. Step 4. By harmonic asymptotics and assuming E < |P | and P = (0, . . . , 0, |P |).
Then the coordinate hyperplanes satisfy

θPh
= (m− 1)(|P | − E)h|x|−n +O(|x|−n).

Consider the cylinder Cσ = {(x′, xn) : |x′| ≤ σ, |xn| ≤ Λ} for some Λ ≫ 1 fixed. By exis-

tence result of Eichmair, Andersson-Metzger, there exists a stable MOTS Σρ,h with boundary

∂Σσ,h = ∂Cσ ∩ {xn = h}. Let σ → ∞. Then Σρ,h → Σ and Σ is a stable MOTS that is

asymptotically planar. As before, we need to further pick the height h so that Σ has vertical

stability.

The issue is that MOTS is not variational and we cannot minimize a quantity to obtain

vertical stability. We revisit the Riemannian case from a different point of view.

Let X be a vector field on M that is identically equal to ∂
∂xn

outside a compact set of M .

We write X = ϕν + X̂ where X̂ is tangent to Σσ,h. We define

F(h) :=

∫
∂Σσ,h

⟨ ∂

∂xn
, η⟩

where η is the normal to ∂Σρ,h in Σρ,h.

Suppose, for simplicity, we assume that Σσ,h is a smooth foliation of minimal hypersurfaces

in h, and Σσ,h0 is the one that minimizes area among h.By the first and second variation

formulas of the area, we have

0 =
d

dh

∣∣∣∣
h=h0

Vol(Σσ,h) =

∫
Σσ,h0

ϕH dµ+ F(h0) = F(h0)

0 ≤ d2

dh2

∣∣∣∣
h=h0

Vol(Σσ,h) = F ′(h0).

Thus, instead of finding a Σσ,h0 with the smallest area in h, we can find h0 such that F ′(h0) ≥
0. Such h0 exists by the mean value theorem and F(Λ) > 0 and F(−Λ) < 0.

Proposition 3.7. Fix σ. Let Σσ,h be a family of stable MOTS whose boundary ∂Cσ∩{xn = h}
as constructed above. There exists h0 such that

d

dh

∣∣∣∣
h=h0

θΣσ,h0
= 0

F ′(h0) ≥ 0.
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Furthermore, for all v ∈ C0,1(Σρ,h0) such that v|∂Σρ,h0
= ⟨ ∂

∂xn
, ν⟩, we have∫

Σρ,h0

|∇v|2 +Qv2 +

∫
∂Σρ,h0

⟨G(X̂) + ϕ2W, η⟩ ≥ 0

where W (ea) = k(ν, ea) and

G(X̂) = (divΣ X̂ + ϕH)X̂ −∇X̂X̂ − 2ϕA(X̂, ·) + (∇XX)⊺

and
∫
∂Σρ,h0

⟨G(X̂) + ϕ2W, η⟩ → 0 as σ → ∞.

Proof. We denote Σ = Σρ,h0 for simplicity. We can compute

F ′(h0) =

∫
∂Σ

⟨ϕ∇Σϕ+G(X̂), η⟩

By (7), we have

0 ≤
∫
Σ

|∇Σv|2 +Qv2 +

∫
∂Σ

v2⟨W −∇Σ log ϕ, η⟩

=

∫
Σ

|∇Σv|2 +Qv2 +

∫
∂Σ

⟨ϕ2W − ϕ∇Σϕ, η⟩

=

∫
Σ

|∇Σv|2 +Qv2 +

∫
∂Σ

⟨G(X̂) + ϕ2W, η⟩ − F ′(h0).

□

4. Equality case E = |P |

Theorem 4.1. Let (M, g, k) be an asymptotically flat initial data set of rate q satisfying the

dominant energy condition and E = |P |.
(1) If q > n− 3, then E = |P | = 0.

(2) If q > n−2
2

and E = |P | = 0, then (M, g) isometrically embeds into Minkowski with

the induced second fundamental form k.

The equality case should characterize the spacetime, not the initial data sets. To motivate,

let’s first consider the Riemannian case.

Definition 4.2. A Riemannian manifold is static if there exists a nontrivial f solving

−(∆f)g +∇2f − fRicg = 0.

We note that DR∗(f) = −(∆f)g +∇2f − fRicg.

If f > 0, then g = −fdt2 + g is vacuum Einstein and the translation Y = ∂
∂t

is a Killing

vector field, i.e. LYg = 0

On a initial data set, we consider the constraint map Φ(g, k) = (µ, J). There is a very nice

generalization of the above relation between the adjoint operator and the spacetime.

Theorem 4.3 (Moncrief). Let (U, g, k) be a vacuum initial data set. Then a nontrivial pair

(f,X) satisfies DΦ∗(f,X) iff Y = fn+X is a Killing vector field in the vacuum spacetime

development (N,g) of (U, g, k).
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We call (f,X) a lapse-shift pair. We note that DΦ∗(f,X) = 0 is equivalent to

− (∆f)g +∇2f − fRicg + lower order terms in (f,X) = 0

Xi;j +Xj;i = −2kijf.

The vacuum assumption in the above result is necessary. There is a generalization for

non-vacuum initial data sets.

Theorem 4.4 (H.-Lee). Let (U, g, k) be an initial data set. Then a lapse-shift pair (f,X),

where f > 0, satisfies

DΦ
∗
(f,X) = 0

fJ + |J |X = 0 (J − null vector equation)

iff µ−|J | = constant, and (U, g, k) embeds into a null perfect fluid spacetime (N,g) satisfying

Ricg − 1
2
Rgg = pg + |J |

f2Y ⊗Y

where p = −1
2
(µ − |J |g) and Y = fn + X is a Killing vector field. Furthermore, (U, g, k)

satisfies the dominant energy condition if and only if (N,g) satisfies the spacetime dominant

energy condition.

We note

DΦ
∗
(f,X) = DΦ∗(f,X) + (1

2
X ⊙ J, 0).

To see the usefulness of the J-null vector equation, we have the following lemma.

Lemma 4.5. Suppose J ̸= 0, and (f,X) satisfies

Xi;j +Xj;i = −2kijf

fJ + |J |X = 0.

Then, letting Ĵ = J
|J | ,

fi = (2kijĴ
j − Ĵi;jĴ

j − k(Ĵ, Ĵ)Ĵi +
1
2
∇Ĵ(Ĵ, Ĵ)Ji)f.

Consequently, if J ̸= 0 on a connected set U , then the space {(f,X) on U : DΦ
∗
(f,X) =

0, fJ + |J |X = 0} is at most one-dimensional.

Proof. Using that Xi = Ĵif and Xi;jXj +
1
2
|X|2,i = −2kijXjf , we obtain

f,i = −2kijXj +Xi;jĴj = 2kijĴjf − f;jĴiĴj − fĴi;jĴj.

Multiplying the previous identity by Ĵi gives

fiĴi = (k(Ĵ, Ĵ)− 1
2
∇Ĵ(Ĵ, Ĵ))f.

Combining the previous two identies gives the stated result. □

Before we prove the equality case, we review the method of Lagrange multiplier for Banach

spaces.
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Theorem 4.6 (Method of Lagrange Multiplier). Let X, Y be Banach spaces, and let U be

an open subset of X. Let H : U → R and Φ : U → Y be C1. Suppose H has a local extreme

at x0 ∈ U subject to the constraint Φ(x) = 0, and suppose DΦ(x0) is surjective. Then there

is λ ∈ Y ∗ such that DH(x0) = λ(DΦ(x0)).

Proof of Theorem 4.1 of H.-Lee. We adapt Bartnik’s argument in our setting. Fix an arbi-

trary lapse-shift pair (f0, X0) that is equal to (a, b) outside a compact set. Define the modified

Regge-Teitelboim functional

H(γ, τ) := H(g,k,a,b)(γ, τ) = (n− 1)ωn−1

(
aE(γ, τ) + b · P (γ, τ)

)
−
∫
M

Φ(γ, τ) · (f0, X0) dµg.

This differs from the classical Regge–Teitelboim Hamiltonian by using the modified operator

Φ in place of the classical constraint operator. The first variation of H at (g, k) is given by

DH|(g,k)(h,w) = −
∫
M

(h,w) · (DΦ|(g,k))∗(f0, X0) dµg.(8)

Choose (a, b) = (E,−P ). Among (γ, τ) near (g, k) solving the constraint Φ(γ, τ) = Φ(g, k),

we know that (γ, τ) satisfies the dominant energy condition and hence E(γ, τ) ≥ |P (γ, τ)|.
Therefore,

H(γ, τ)−H(g, k) = (n− 1)ωn−1

(
EE(γ, τ)− P · P (γ, τ)

)
≥ 0.

Since DΦ : C2,α
−q ×C1,α

−1−q −→ C0,α
−2−q is surjective, we apply the method of Lagrange mul-

tipliers, which implies the existence of a Lagrange multiplier (f̃, X̃) ∈ (C0,α
−2−q(M))∗ such

that

DH|(g,k)(h,w) = (f̃, X̃)(DΦ|(g,k)(h,w))

for all (h,w) ∈ C2,α
−q (M)× C1,α

−1−q(M). By (8), (f̃, X̃) weakly solves

DΦ
∗
(f̃, X̃) = −DΦ

∗
(f0, X0) ∈ C0,α

−2−q(M)× C1,α
−1−q(M).

By elliptic regularity and that (f̃, X̃) is a bounded linear functional on C0,α
−q (M), we can

obtain (f̃, X̃) ∈ C2,α
−q (M)× C1,α

−1−q(M). Thus, we construct (f,X) = (f0 + f̃, X0 + X̃) that is

asymptotic to (E,−P ). By the result of Beig-Chruściel and assume faster fall-off rate on q,

we conclude E = |P | = 0.

For Item (2), we now assume E = |P | = 0. We can apply the argument for H(g,k,a,b) where

we choose a = |b| arbitrary. Compute

H(γ, τ)−H(g, k) = (n− 1)ωn−1(aE(γ, τ) + b · P (γ, τ))
≥ (n− 1)ωn−1(aE(γ, τ)− |b||P (γ, τ)|) ≥ 0.

Therefore, we obtain (n + 1) lapse-shift pairs asymptotic to either (1, 0) or (0, ∂i), each

solving DΦ
∗
(f,X) = 0. Furthermore, fJ + J |X| = 0. (This is a non-trivial result but we

skip the argument.) By Lemma 4.5, we conclude that (M, g, k) is vacuum. The vacuum

spacetime development is asymptotically flat with (n+1) Killing vector fields asymptotic to

translations. Hence, the spacetime must be Minkowski. □



A TOUR OF THE POSITIVE MASS THEOREM 21

We have proven more generally, if (M, g, k) is an asymptotically flat initial data set that

minimizes the ADM mass, then it admits a lapse-shift pair solving

DΦ
∗
(f,X) = 0

fJ + |J |X = 0,

which is equivalent to the existence of spacetime (N,g) satisfying

Ricg − 1
2
Rgg = |J |

f2Y ⊗Y

where Y is a Killing vector field. In search of such spacetimes, we make the simplified

assumption that Y is parallel. It leads to finding the so-called pp-wave spacetime.

Definition 4.7. A spacetime (N,g) is called a pp-wave if it admits a parallel null Killing

vector field Y such that each integral hypersurface of the distribution Y⊥, which is a Killing

horizon, has the flat induced metric.

Example 4.8. Consider the metric g on Rn+1 given by

g = dudxn + Sdx2n + dx21 + · · ·+ dx2n−1

where S is a scalar function of (x1, . . . , xn) and is independent of u. When S ≡ 1, g is

Minkowski spacetime, just expressed in a different coordinate chart. If S − 1 ∈ C2,α
−q , then

the constant u-slices are asymptotically flat initial data sets of fall-off rate q. Furthermore,

the spacetime satisfies the spacetime dominant energy condition if and only if ∆′S ≤ 0.

For n = 3, S ≡ 1 by Liouville theorem. For n = 4, the decay rate of S also implies

that S ≡ 1. Therefore, for n = 3, 4, asymptotically flat pp-wave of dimensions (n + 1)

satisfying the spacetime dominant energy condition must be Minkowski. There are examples

of asymptotically flat pp-waves that are not Minkowski by H.-Lee for n > 8 and by Hirsch-

Zhang for n ≥ 5, which provide examples of asymptotically flat initial data sets that satisfy

the dominant energy condition and have E = |P |, but do not embed in Minkowski spacetime.
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5. Problem Set

Problem 1. Let (M, g) be a 3-dimensional manifold.

(1) If Ricg > 0, then (M, g) does not contain any closed stable minimal surface (shown

in class).

(2) If Ricg ≥ 0 and Σ is a closed stable minimal torus, then Σ is totally geodesic,

Ricg(ν, ν) = 0 along Σ, and Σ is a flat torus.

In the next problem, we will prove the following theorem originally due to Cai and Gal-

loway: If (M3, g) is a 3-manifold with Rg ≥ 0 and Σ is a torus that is locally area-minimizing

in M , then M is flat in a neighborhood of Σ.

Problem 2. Let (M, g) be a 3-dimensional manifold with Rg ≥ 0. Let Σ be a stable minimal

torus.

(1) Show that Σ is totally geodesic, Ricg(ν, ν) = 0, and the induced metric on Σ is flat.

(2) Consider the map Ψ : C2,α(Σ)× R → C0,α(Σ)× R defined by

Ψ(u, a) =

(
HΣ(u) − a,

∫
Σ

u

)
where Σ(u) = exp(uν) denotes the normal graph on Σ. Show that Ψ is local dif-

feomorphism at (u, a) = (0, 0). (Hint: show the linearization of Ψ at (0, 0) is an

isomorphism and apply the Inverse Function Theorem.)

(3) Let (u(t), a(t)) solve Ψ(u(t), a(t)) = (0, t). Show that a′(0) = 0, and u′(0) > 0. In

particular, u(t) is strictly increasing in t for all |t| small, and thus Σ(u(t)) forms a

foliation of constant mean curvature tori near Σ.

(4) Assume Σ is locally area minimizing, i.e. Σ has area less or equal to that of all nearby

surfaces. Show that a(t) ≡ 0 for |t| small and each {Σt} is locally area minimiziing.

Then show (M, g) splits as (−ϵ, ϵ)×Σ with the metric dt2+gΣ where gΣ is the induced

metric on Σ.

Problem 3. Consider the linear elliptic operator Lu := −∆u+qu on a manifold Ω, possibly

with nonempty boundary. Then the first eigenvalue as defined by Definition 1.6 is given by

the Rayleigh quotient:

λ1 = inf
u̸=0

{∫
Ω

(|∇u|2 + qu2) dµ : ∥u∥L2 = 1, u|∂Ω = 0

}
.

Problem 4. Suppose (M3, g) has Rg ≥ 2. Let Σ be a closed stable minimal surface.

(1) Each component of Σ has area ≤ 4π.

(2) If Σ has area 4π, then Σ is totally geodesic, R = 2 and Ric(ν, ν) = 0 along Σ, and Σ

with the induced metric is isometric to a round sphere of radius 1.
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Problem 5. Let (M, g) be an n-dimensional asymptotically flat manifold. If ḡ = u
4

n−2 g for

some u > 0 satisfying u(x) = 1 +O1(|x|2−n), then

m(ḡ) = m(g)− 2

(n− 2)ωn−1

lim
r→∞

∫
Sr

ν(u) dσ(9)

where ν = x
r
is the outward unit normal to Sr with respect to gE. Use the formula (9) to

verify that the Schwarzschild metric gm has ADM mass m.

Problem 6. Suppose g is a rotationally symmetric metric on [a,∞)×Sn−1 in the sense that

g =
1

f(r)
dr2 + r2dΩ2.

where dΩ2 is the standard unit sphere metric on Sn−1.

(1) Compute the second fundamental form and mean curvature of the r-level set.

(2) Show the scalar curvature of g is given by

Rg =
n− 1

r2
((n− 2)(1− f(r))− rf ′(r)) .

(Hint: One way is to use the second variational formula of the volume of the r-level

set.)

Problem 7 (Birkhoff’s theorem). Using Problem 6, show that the only rotationally sym-

metric metric with zero scalar curvature defined on [a,∞)× Sn−1 is given by

g =
1

f(r)
dr2 + r2dΩ2

where f(r) = 1 − 2m
rn−2 . By changing of coordinates, the metric can be rewritten as the

Schwarzschild metric gm =
(
1 + m

2|x|n−2

) 4
n−2

gE given in Example 2.1.

Problem 8. Consider the 3-dimensional Schwarzschild metric gm =
(
1 + m

2|x|

)4
gE.

(1) Find the area A(r) of Sr = {x : |x| = r} in the metric gm. For m > 0, show that A(r)

has a global minimum at Σ0 := {r = m
2
}.

(2) For m > 0, show that r → m2

4r
induces an isometry of gm fixing Σ0.

(3) When m < 0, show that A(r) → 0 as r → −m
2
. Also show that a radial geodesic from

r = r0 > −m
2
to r = −m

2
has finite length. Show that the Schwarzschild metric with

m < 0 cannot be completed by adding in a point.

In next three problems, we break down the proof of the rigidity of the positive mass

theorem into the following problems.

Theorem 5.1. Let (M, g) be asymptotically flat with Rg ≥ 0. If m(g) = 0, then (M, g) is

isometric to (Rn, gE).
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In the first problem, we will show that Rg ≡ 0.

Problem 9. Let (M, g) be asymptotically flat with m(g) = 0. Suppose Rg ≥ 0 everywhere

and Rg > 0 somewhere.

(1) Show that there is a scalar function u > 0 with u → 1 as |x| → ∞ solving 8∆gu −
Rgu = 0.

(2) Define ĝ := u
4

n−2 g. Show that Rg = 0 and use Problem 5 to show that m(ĝ) < 0.

In the next problem, we will show that Ricg ≡ 0.

Problem 10. Let (M, g) be asymptotically flat with m(g) = 0. Suppose Rg = 0. Let h be a

compactly supported, symmetric (0, 2)-tensor. Consider the family of metrics g(t) = g + th.

(1) Show that for |t| small, there exists a unique solution ut > 0 with u0 ≡ 1 and ut → 1

as |x| → ∞ such that

−∆g(t)ut + c(n)Rg(t)ut = 0.

Consequently, the metric ĝ(t) = u4tg(t) has zero scalar curvature with ĝ(0) = g.

(2) Using Problem 5, show that the ADM mass of ĝ(t) satisfies

m(ĝ(t)) = m(g)− 1

2(n− 1)ωn−1

∫
M

Rg(t)ut dv

and thus
d

dt

∣∣∣∣
t=0

m(ĝ(t)) =
1

2(n− 1)ωn−1

∫
M

Ricg · h dv.

(3) Using positivity of the ADM mass, show that g has zero Ricci curvature.

Problem 11. Let (M, g) be an n-dimensional asymptotically flat manifold with Ricg ≡ 0.

Show thatM must diffeomorphic to Rn and (M, g) must be isometric to the Euclidean space.


	1. Minimal surfaces and scalar curvature
	2. Riemannian positive mass theorem
	2.1. Asymptotically flat manifolds and the ADM mass
	2.2. Unbounded minimal hypersurfaces
	2.3. Complete unbounded minimal hypersurfaces
	2.4. Proof for n=3
	2.5. Proof n> 3: the height picking method

	3. Spacetime positive mass theorem
	3.1. Basic facts about MOTS and stability
	3.2. Proof of positivity E|P|
	3.3. Step 1

	4. Equality case E=|P|
	5. Problem Set

